代码拉取完成,页面将自动刷新
import copy
import time
from typing import Any, Awaitable, Callable, Dict, List, Tuple, cast
from anthropic import AsyncAnthropic
from openai.types.chat import ChatCompletionMessageParam
from config import IS_DEBUG_ENABLED
from debug.DebugFileWriter import DebugFileWriter
from image_processing.utils import process_image
from utils import pprint_prompt
from llm import Completion, Llm
def convert_openai_messages_to_claude(
messages: List[ChatCompletionMessageParam],
) -> Tuple[str, List[Dict[str, Any]]]:
"""
Convert OpenAI format messages to Claude format, handling image content properly.
Args:
messages: List of messages in OpenAI format
Returns:
Tuple of (system_prompt, claude_messages)
"""
# Deep copy messages to avoid modifying the original list
cloned_messages = copy.deepcopy(messages)
system_prompt = cast(str, cloned_messages[0].get("content"))
claude_messages = [dict(message) for message in cloned_messages[1:]]
for message in claude_messages:
if not isinstance(message["content"], list):
continue
for content in message["content"]: # type: ignore
if content["type"] == "image_url":
content["type"] = "image"
# Extract base64 data and media type from data URL
# Example base64 data URL: ...
image_data_url = cast(str, content["image_url"]["url"])
# Process image and split media type and data
# so it works with Claude (under 5mb in base64 encoding)
(media_type, base64_data) = process_image(image_data_url)
# Remove OpenAI parameter
del content["image_url"]
content["source"] = {
"type": "base64",
"media_type": media_type,
"data": base64_data,
}
return system_prompt, claude_messages
async def stream_claude_response(
messages: List[ChatCompletionMessageParam],
api_key: str,
callback: Callable[[str], Awaitable[None]],
model_name: str,
) -> Completion:
start_time = time.time()
client = AsyncAnthropic(api_key=api_key)
# Base parameters
max_tokens = 8192
temperature = 0.0
# Claude 3.7 Sonnet can support higher max tokens
if model_name == "claude-3-7-sonnet-20250219":
max_tokens = 20000
# Translate OpenAI messages to Claude messages
# Convert OpenAI format messages to Claude format
system_prompt, claude_messages = convert_openai_messages_to_claude(messages)
response = ""
if (
model_name == Llm.CLAUDE_4_SONNET_2025_05_14.value
or model_name == Llm.CLAUDE_4_OPUS_2025_05_14.value
):
print(f"Using {model_name} with thinking")
# Thinking is not compatible with temperature
async with client.messages.stream(
model=model_name,
thinking={"type": "enabled", "budget_tokens": 10000},
max_tokens=30000,
system=system_prompt,
messages=claude_messages, # type: ignore
) as stream:
async for event in stream:
if event.type == "content_block_delta":
if event.delta.type == "thinking_delta":
pass
# print(event.delta.thinking, end="")
elif event.delta.type == "text_delta":
response += event.delta.text
await callback(event.delta.text)
else:
# Stream Claude response
async with client.beta.messages.stream(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=claude_messages, # type: ignore
betas=["output-128k-2025-02-19"],
) as stream:
async for text in stream.text_stream:
response += text
await callback(text)
# Close the Anthropic client
await client.close()
completion_time = time.time() - start_time
return {"duration": completion_time, "code": response}
async def stream_claude_response_native(
system_prompt: str,
messages: list[Any],
api_key: str,
callback: Callable[[str], Awaitable[None]],
include_thinking: bool = False,
model_name: str = "claude-3-7-sonnet-20250219",
) -> Completion:
start_time = time.time()
client = AsyncAnthropic(api_key=api_key)
# Base model parameters
max_tokens = 4096
temperature = 0.0
# Multi-pass flow
current_pass_num = 1
max_passes = 2
prefix = "<thinking>"
response = None
# For debugging
full_stream = ""
debug_file_writer = DebugFileWriter()
while current_pass_num <= max_passes:
current_pass_num += 1
# Set up message depending on whether we have a <thinking> prefix
messages_to_send = (
messages + [{"role": "assistant", "content": prefix}]
if include_thinking
else messages
)
pprint_prompt(messages_to_send)
async with client.messages.stream(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=messages_to_send, # type: ignore
) as stream:
async for text in stream.text_stream:
print(text, end="", flush=True)
full_stream += text
await callback(text)
response = await stream.get_final_message()
response_text = response.content[0].text
# Write each pass's code to .html file and thinking to .txt file
if IS_DEBUG_ENABLED:
debug_file_writer.write_to_file(
f"pass_{current_pass_num - 1}.html",
debug_file_writer.extract_html_content(response_text),
)
debug_file_writer.write_to_file(
f"thinking_pass_{current_pass_num - 1}.txt",
response_text.split("</thinking>")[0],
)
# Set up messages array for next pass
messages += [
{"role": "assistant", "content": str(prefix) + response.content[0].text},
{
"role": "user",
"content": "You've done a good job with a first draft. Improve this further based on the original instructions so that the app is fully functional and looks like the original video of the app we're trying to replicate.",
},
]
print(
f"Token usage: Input Tokens: {response.usage.input_tokens}, Output Tokens: {response.usage.output_tokens}"
)
# Close the Anthropic client
await client.close()
completion_time = time.time() - start_time
if IS_DEBUG_ENABLED:
debug_file_writer.write_to_file("full_stream.txt", full_stream)
if not response:
raise Exception("No HTML response found in AI response")
else:
return {
"duration": completion_time,
"code": response.content[0].text, # type: ignore
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。