2 Star 2 Fork 1

cockroachdb/cockroach

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
btree_based_interval.go 22.94 KB
一键复制 编辑 原始数据 按行查看 历史
Tobias Schottdorf 提交于 2017-07-31 17:15 . *: remove // Author: comments
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
//
// This code is based on: https://github.com/google/btree
package interval
import (
"errors"
"sort"
)
const (
// DefaultBTreeMinimumDegree is the default B-tree minimum degree. Benchmarks
// show that the interval tree performs best with this minimum degree.
DefaultBTreeMinimumDegree = 32
)
var _ = newBTree
// newBTree creates a new interval tree with the given overlapper function and
// the default B-tree minimum degree.
func newBTree(overlapper Overlapper) *btree {
return newBTreeWithDegree(overlapper, DefaultBTreeMinimumDegree)
}
// newBTreeWithDegree creates a new interval tree with the given overlapper
// function and the given minimum degree. A minimum degree less than 2 will
// cause a panic.
//
// newBTreeWithDegree(overlapper, 2), for example, will create a 2-3-4 tree (each
// node contains 1-3 Interfaces and 2-4 children).
func newBTreeWithDegree(overlapper Overlapper, minimumDegree int) *btree {
if minimumDegree < 2 {
panic("bad minimum degree")
}
return &btree{
MinimumDegree: minimumDegree,
Overlapper: overlapper,
}
}
func isValidInterface(a Interface) error {
if a == nil {
return errors.New("nil interface")
}
r := a.Range()
return rangeError(r)
}
// interfaces stores Interfaces sorted by Range().End in a node.
type items []Interface
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *items) insertAt(index int, e Interface) {
oldLen := len(*s)
*s = append(*s, nil)
if index < oldLen {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = e
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *items) removeAt(index int) Interface {
e := (*s)[index]
(*s)[index] = nil
copy((*s)[index:], (*s)[index+1:])
*s = (*s)[:len(*s)-1]
return e
}
// pop removes and returns the last element in the list.
func (s *items) pop() (out Interface) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// find returns the index where the given Interface should be inserted into this
// list. 'found' is true if the interface already exists in the list at the
// given index.
func (s items) find(e Interface) (index int, found bool) {
i := sort.Search(len(s), func(i int) bool {
return Compare(e, s[i]) < 0
})
if i > 0 && Equal(s[i-1], e) {
return i - 1, true
}
return i, false
}
// children stores child nodes sorted by Range.End in a node.
type children []*node
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *children) insertAt(index int, n *node) {
oldLen := len(*s)
*s = append(*s, nil)
if index < oldLen {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = n
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *children) removeAt(index int) *node {
n := (*s)[index]
(*s)[index] = nil
copy((*s)[index:], (*s)[index+1:])
*s = (*s)[:len(*s)-1]
return n
}
// pop removes and returns the last element in the list.
func (s *children) pop() (out *node) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// node is an internal node in a tree.
//
// It must at all times maintain the invariant that either
// * len(children) == 0, len(interfaces) unconstrained
// * len(children) == len(interfaces) + 1
type node struct {
// Range is the node range which covers all the ranges in the subtree rooted
// at the node. Range.Start is the leftmost position. Range.End is the
// rightmost position. Here we follow the approach employed by
// https://github.com/biogo/store/tree/master/interval since it make it easy
// to analyze the traversal of intervals which overlaps with a given interval.
// CLRS only uses Range.End.
Range Range
items items
children children
t *btree
}
// split splits the given node at the given index. The current node shrinks, and
// this function returns the Interface that existed at that index and a new node
// containing all interfaces/children after it. Before splitting:
//
// +-----------+
// | x y z |
// ---/-/-\-\--+
//
// After splitting:
//
// +-----------+
// | y |
// -----/-\----+
// / \
// v v
// +-----------+ +-----------+
// | x | | z |
// +-----------+ +-----------+
//
func (n *node) split(i int, fast bool) (Interface, *node) {
e := n.items[i]
second := n.t.newNode()
second.items = make(items, n.t.minItems())
copy(second.items, n.items[i+1:])
n.items = n.items[:i]
if len(n.children) > 0 {
second.children = make(children, n.t.minItems()+1)
copy(second.children, n.children[i+1:])
n.children = n.children[:i+1]
}
if !fast {
// adjust range for the first split part
oldRangeEnd := n.Range.End
n.Range.End = n.rangeEnd()
// adjust ragne for the second split part
second.Range.Start = second.rangeStart()
if n.Range.End.Equal(oldRangeEnd) || e.Range().End.Equal(oldRangeEnd) {
second.Range.End = second.rangeEnd()
} else {
second.Range.End = oldRangeEnd
}
}
return e, second
}
// maybeSplitChild checks if a child should be split, and if so splits it.
// Returns whether or not a split occurred.
func (n *node) maybeSplitChild(i int, fast bool) bool {
maxItems := n.t.maxItems()
if len(n.children[i].items) < maxItems {
return false
}
first := n.children[i]
e, second := first.split(maxItems/2, fast)
n.items.insertAt(i, e)
n.children.insertAt(i+1, second)
return true
}
// insert inserts an Interface into the subtree rooted at this node, making sure
// no nodes in the subtree exceed maxItems Interfaces.
func (n *node) insert(e Interface, fast bool) (out Interface, extended bool) {
i, found := n.items.find(e)
if found {
out = n.items[i]
n.items[i] = e
return
}
if len(n.children) == 0 {
n.items.insertAt(i, e)
out = nil
if !fast {
if i == 0 {
extended = true
n.Range.Start = n.items[0].Range().Start
}
if n.items[i].Range().End.Compare(n.Range.End) > 0 {
extended = true
n.Range.End = n.items[i].Range().End
}
}
return
}
if n.maybeSplitChild(i, fast) {
inTree := n.items[i]
switch Compare(e, inTree) {
case -1:
// no change, we want first split node
case 1:
i++ // we want second split node
default:
out = n.items[i]
n.items[i] = e
return
}
}
out, extended = n.children[i].insert(e, fast)
if !fast && extended {
extended = false
if i == 0 && n.children[0].Range.Start.Compare(n.Range.Start) < 0 {
extended = true
n.Range.Start = n.children[0].Range.Start
}
if n.children[i].Range.End.Compare(n.Range.End) > 0 {
extended = true
n.Range.End = n.children[i].Range.End
}
}
return
}
func (t *btree) isEmpty() bool {
return t.root == nil || len(t.root.items) == 0
}
func (t *btree) Get(r Range) (o []Interface) {
return t.GetWithOverlapper(r, t.Overlapper)
}
func (t *btree) GetWithOverlapper(r Range, overlapper Overlapper) (o []Interface) {
if err := rangeError(r); err != nil {
return
}
if !t.overlappable(r) {
return
}
t.root.doMatch(func(e Interface) (done bool) { o = append(o, e); return }, r, overlapper)
return
}
func (t *btree) DoMatching(fn Operation, r Range) bool {
if err := rangeError(r); err != nil {
return false
}
if !t.overlappable(r) {
return false
}
return t.root.doMatch(fn, r, t.Overlapper)
}
func (t *btree) overlappable(r Range) bool {
if t.isEmpty() || !t.Overlapper.Overlap(r, t.root.Range) {
return false
}
return true
}
// benchmarks show that if Comparable.Compare is invoked directly instead of
// through an indirection with Overlapper, Insert, Delete and a traversal to
// visit overlapped intervals have a noticeable speed-up. So two versions of
// doMatch are created. One is for InclusiveOverlapper. The other is for
// ExclusiveOverlapper.
func (n *node) doMatch(fn Operation, r Range, overlapper Overlapper) (done bool) {
if overlapper == InclusiveOverlapper {
return n.inclusiveDoMatch(fn, r, overlapper)
}
return n.exclusiveDoMatch(fn, r, overlapper)
}
// doMatch for InclusiveOverlapper.
func (n *node) inclusiveDoMatch(fn Operation, r Range, overlapper Overlapper) (done bool) {
length := sort.Search(len(n.items), func(i int) bool {
return n.items[i].Range().Start.Compare(r.End) > 0
})
if len(n.children) == 0 {
for _, e := range n.items[:length] {
if r.Start.Compare(e.Range().End) <= 0 {
if done = fn(e); done {
return
}
}
}
return
}
for i := 0; i < length; i++ {
c := n.children[i]
if r.Start.Compare(c.Range.End) <= 0 {
if done = c.inclusiveDoMatch(fn, r, overlapper); done {
return
}
}
e := n.items[i]
if r.Start.Compare(e.Range().End) <= 0 {
if done = fn(e); done {
return
}
}
}
if overlapper.Overlap(r, n.children[length].Range) {
done = n.children[length].inclusiveDoMatch(fn, r, overlapper)
}
return
}
// doMatch for ExclusiveOverlapper.
func (n *node) exclusiveDoMatch(fn Operation, r Range, overlapper Overlapper) (done bool) {
length := sort.Search(len(n.items), func(i int) bool {
return n.items[i].Range().Start.Compare(r.End) >= 0
})
if len(n.children) == 0 {
for _, e := range n.items[:length] {
if r.Start.Compare(e.Range().End) < 0 {
if done = fn(e); done {
return
}
}
}
return
}
for i := 0; i < length; i++ {
c := n.children[i]
if r.Start.Compare(c.Range.End) < 0 {
if done = c.exclusiveDoMatch(fn, r, overlapper); done {
return
}
}
e := n.items[i]
if r.Start.Compare(e.Range().End) < 0 {
if done = fn(e); done {
return
}
}
}
if overlapper.Overlap(r, n.children[length].Range) {
done = n.children[length].exclusiveDoMatch(fn, r, overlapper)
}
return
}
func (t *btree) Do(fn Operation) bool {
if t.root == nil {
return false
}
return t.root.do(fn)
}
func (n *node) do(fn Operation) (done bool) {
cLen := len(n.children)
if cLen == 0 {
for _, e := range n.items {
if done = fn(e); done {
return
}
}
return
}
for i := 0; i < cLen-1; i++ {
c := n.children[i]
if done = c.do(fn); done {
return
}
e := n.items[i]
if done = fn(e); done {
return
}
}
done = n.children[cLen-1].do(fn)
return
}
// toRemove details what interface to remove in a node.remove call.
type toRemove int
const (
removeItem toRemove = iota // removes the given interface
removeMin // removes smallest interface in the subtree
removeMax // removes largest interface in the subtree
)
// remove removes an interface from the subtree rooted at this node.
func (n *node) remove(
e Interface, minItems int, typ toRemove, fast bool,
) (out Interface, shrunk bool) {
var i int
var found bool
switch typ {
case removeMax:
if len(n.children) == 0 {
return n.removeFromLeaf(len(n.items)-1, fast)
}
i = len(n.items)
case removeMin:
if len(n.children) == 0 {
return n.removeFromLeaf(0, fast)
}
i = 0
case removeItem:
i, found = n.items.find(e)
if len(n.children) == 0 {
if found {
return n.removeFromLeaf(i, fast)
}
return
}
default:
panic("invalid remove type")
}
// If we get to here, we have children.
child := n.children[i]
if len(child.items) <= minItems {
out, shrunk = n.growChildAndRemove(i, e, minItems, typ, fast)
return
}
// Either we had enough interfaces to begin with, or we've done some
// merging/stealing, because we've got enough now and we're ready to return
// stuff.
if found {
// The interface exists at index 'i', and the child we've selected can give
// us a predecessor, since if we've gotten here it's got > minItems
// interfaces in it.
out = n.items[i]
// We use our special-case 'remove' call with typ=removeMax to pull the
// predecessor of interface i (the rightmost leaf of our immediate left
// child) and set it into where we pulled the interface from.
n.items[i], _ = child.remove(nil, minItems, removeMax, fast)
if !fast {
shrunk = n.adjustRangeEndForRemoval(out, nil)
}
return
}
// Final recursive call. Once we're here, we know that the interface isn't in
// this node and that the child is big enough to remove from.
out, shrunk = child.remove(e, minItems, typ, fast)
if !fast && shrunk {
shrunkOnStart := false
if i == 0 {
if n.Range.Start.Compare(child.Range.Start) < 0 {
shrunkOnStart = true
n.Range.Start = child.Range.Start
}
}
shrunkOnEnd := n.adjustRangeEndForRemoval(out, nil)
shrunk = shrunkOnStart || shrunkOnEnd
}
return
}
// adjustRangeEndForRemoval adjusts Range.End for the node after an interface
// and/or a child is removed.
func (n *node) adjustRangeEndForRemoval(e Interface, c *node) (decreased bool) {
if (e != nil && e.Range().End.Equal(n.Range.End)) || (c != nil && c.Range.End.Equal(n.Range.End)) {
newEnd := n.rangeEnd()
if n.Range.End.Compare(newEnd) > 0 {
decreased = true
n.Range.End = newEnd
}
}
return
}
// removeFromLeaf removes children[i] from the leaf node.
func (n *node) removeFromLeaf(i int, fast bool) (out Interface, shrunk bool) {
if i == len(n.items)-1 {
out = n.items.pop()
} else {
out = n.items.removeAt(i)
}
if !fast && len(n.items) > 0 {
shrunkOnStart := false
if i == 0 {
oldStart := n.Range.Start
n.Range.Start = n.items[0].Range().Start
if !n.Range.Start.Equal(oldStart) {
shrunkOnStart = true
}
}
shrunkOnEnd := n.adjustRangeEndForRemoval(out, nil)
shrunk = shrunkOnStart || shrunkOnEnd
}
return
}
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
// Interface from it while keeping it at minItems, then calls remove to
// actually remove it.
//
// Most documentation says we have to do two sets of special casing:
// 1) interface is in this node
// 2) interface is in child
// In both cases, we need to handle the two subcases:
// A) node has enough values that it can spare one
// B) node doesn't have enough values
// For the latter, we have to check:
// a) left sibling has node to spare
// b) right sibling has node to spare
// c) we must merge
// To simplify our code here, we handle cases #1 and #2 the same:
// If a node doesn't have enough Interfaces, we make sure it does (using a,b,c).
// We then simply redo our remove call, and the second time (regardless of
// whether we're in case 1 or 2), we'll have enough Interfaces and can guarantee
// that we hit case A.
func (n *node) growChildAndRemove(
i int, e Interface, minItems int, typ toRemove, fast bool,
) (out Interface, shrunk bool) {
if i > 0 && len(n.children[i-1].items) > minItems {
n.stealFromLeftChild(i, fast)
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
n.stealFromRightChild(i, fast)
} else {
if i >= len(n.items) {
i--
}
n.mergeWithRightChild(i, fast)
}
return n.remove(e, minItems, typ, fast)
}
// Steal from left child. Before stealing:
//
// +-----------+
// | y |
// -----/-\----+
// / \
// v v
// +-----------+ +-----------+
// | x | | |
// +----------\+ +-----------+
// \
// v
// a
//
// After stealing:
//
// +-----------+
// | x |
// -----/-\----+
// / \
// v v
// +-----------+ +-----------+
// | | | y |
// +-----------+ +/----------+
// /
// v
// a
//
func (n *node) stealFromLeftChild(i int, fast bool) {
// steal
stealTo := n.children[i]
stealFrom := n.children[i-1]
x := stealFrom.items.pop()
y := n.items[i-1]
stealTo.items.insertAt(0, y)
n.items[i-1] = x
var a *node
if len(stealFrom.children) > 0 {
a = stealFrom.children.pop()
stealTo.children.insertAt(0, a)
}
if !fast {
// adjust range for stealFrom
stealFrom.adjustRangeEndForRemoval(x, a)
// adjust range for stealTo
stealTo.Range.Start = stealTo.rangeStart()
if y.Range().End.Compare(stealTo.Range.End) > 0 {
stealTo.Range.End = y.Range().End
}
if a != nil && a.Range.End.Compare(stealTo.Range.End) > 0 {
stealTo.Range.End = a.Range.End
}
}
}
// Steal from right child. Before stealing:
//
// +-----------+
// | y |
// -----/-\----+
// / \
// v v
// +-----------+ +-----------+
// | | | x |
// +---------- + +/----------+
// /
// v
// a
//
// After stealing:
//
// +-----------+
// | x |
// -----/-\----+
// / \
// v v
// +-----------+ +-----------+
// | y | | |
// +----------\+ +-----------+
// \
// v
// a
//
func (n *node) stealFromRightChild(i int, fast bool) {
// steal
stealTo := n.children[i]
stealFrom := n.children[i+1]
x := stealFrom.items.removeAt(0)
y := n.items[i]
stealTo.items = append(stealTo.items, y)
n.items[i] = x
var a *node
if len(stealFrom.children) > 0 {
a = stealFrom.children.removeAt(0)
stealTo.children = append(stealTo.children, a)
}
if !fast {
// adjust range for stealFrom
stealFrom.Range.Start = stealFrom.rangeStart()
stealFrom.adjustRangeEndForRemoval(x, a)
// adjust range for stealTo
if y.Range().End.Compare(stealTo.Range.End) > 0 {
stealTo.Range.End = y.Range().End
}
if a != nil && a.Range.End.Compare(stealTo.Range.End) > 0 {
stealTo.Range.End = a.Range.End
}
}
}
// Merge with right child. Before merging:
//
// +-----------+
// | u y v |
// -----/-\----+
// / \
// v v
// +-----------+ +-----------+
// | x | | z |
// +---------- + +-----------+
//
// After merging:
//
// +-----------+
// | u v |
// ------|-----+
// |
// v
// +-----------+
// | x y z |
// +---------- +
//
func (n *node) mergeWithRightChild(i int, fast bool) {
// merge
y := n.items.removeAt(i)
child := n.children[i]
mergeChild := n.children.removeAt(i + 1)
child.items = append(child.items, y)
child.items = append(child.items, mergeChild.items...)
child.children = append(child.children, mergeChild.children...)
if !fast {
if y.Range().End.Compare(child.Range.End) > 0 {
child.Range.End = y.Range().End
}
if mergeChild.Range.End.Compare(child.Range.End) > 0 {
child.Range.End = mergeChild.Range.End
}
}
}
var _ Tree = (*btree)(nil)
// btree is an interval tree based on an augmented BTree.
//
// Tree stores Instances in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type btree struct {
root *node
length int
Overlapper Overlapper
MinimumDegree int
}
// adjustRange sets the Range to the maximum extent of the childrens' Range
// spans and its range spans.
func (n *node) adjustRange() {
n.Range.Start = n.rangeStart()
n.Range.End = n.rangeEnd()
}
// rangeStart returns the leftmost position for the node range, assuming that
// its children have correct range extents.
func (n *node) rangeStart() Comparable {
minStart := n.items[0].Range().Start
if len(n.children) > 0 {
minStart = n.children[0].Range.Start
}
return minStart
}
// rangeEnd returns the rightmost position for the node range, assuming that its
// children have correct range extents.
func (n *node) rangeEnd() Comparable {
if len(n.items) == 0 {
maxEnd := n.children[0].Range.End
for _, c := range n.children[1:] {
if end := c.Range.End; maxEnd.Compare(end) < 0 {
maxEnd = end
}
}
return maxEnd
}
maxEnd := n.items[0].Range().End
for _, e := range n.items[1:] {
if end := e.Range().End; maxEnd.Compare(end) < 0 {
maxEnd = end
}
}
for _, c := range n.children {
if end := c.Range.End; maxEnd.Compare(end) < 0 {
maxEnd = end
}
}
return maxEnd
}
func (t *btree) AdjustRanges() {
if t.isEmpty() {
return
}
t.root.adjustRanges()
}
func (n *node) adjustRanges() {
for _, c := range n.children {
c.adjustRanges()
}
n.adjustRange()
}
// maxItems returns the max number of Interfaces to allow per node.
func (t *btree) maxItems() int {
return t.MinimumDegree*2 - 1
}
// minItems returns the min number of Interfaces to allow per node (ignored
// for the root node).
func (t *btree) minItems() int {
return t.MinimumDegree - 1
}
func (t *btree) newNode() (n *node) {
n = &node{t: t}
return
}
func (t *btree) Insert(e Interface, fast bool) (err error) {
// t.metrics("Insert")
if err = isValidInterface(e); err != nil {
return
}
if t.root == nil {
t.root = t.newNode()
t.root.items = append(t.root.items, e)
t.length++
if !fast {
t.root.Range.Start = e.Range().Start
t.root.Range.End = e.Range().End
}
return nil
} else if len(t.root.items) >= t.maxItems() {
oldroot := t.root
t.root = t.newNode()
if !fast {
t.root.Range.Start = oldroot.Range.Start
t.root.Range.End = oldroot.Range.End
}
e2, second := oldroot.split(t.maxItems()/2, fast)
t.root.items = append(t.root.items, e2)
t.root.children = append(t.root.children, oldroot, second)
}
out, _ := t.root.insert(e, fast)
if out == nil {
t.length++
}
return
}
func (t *btree) Delete(e Interface, fast bool) (err error) {
// t.metrics("Delete")
if err = isValidInterface(e); err != nil {
return
}
if !t.overlappable(e.Range()) {
return
}
t.delete(e, removeItem, fast)
return
}
func (t *btree) delete(e Interface, typ toRemove, fast bool) Interface {
out, _ := t.root.remove(e, t.minItems(), typ, fast)
if len(t.root.items) == 0 && len(t.root.children) > 0 {
t.root = t.root.children[0]
}
if out != nil {
t.length--
}
return out
}
func (t *btree) Len() int {
return t.length
}
type stackElem struct {
node *node
index int
}
type btreeIterator struct {
stack []*stackElem
}
func (ti *btreeIterator) Next() (i Interface, ok bool) {
if len(ti.stack) == 0 {
return nil, false
}
elem := ti.stack[len(ti.stack)-1]
curItem := elem.node.items[elem.index]
elem.index++
if elem.index >= len(elem.node.items) {
ti.stack = ti.stack[:len(ti.stack)-1]
}
if len(elem.node.children) > 0 {
for r := elem.node.children[elem.index]; r != nil; r = r.children[0] {
ti.stack = append(ti.stack, &stackElem{r, 0})
if len(r.children) == 0 {
break
}
}
}
return curItem, true
}
func (t *btree) Iterator() TreeIterator {
var ti btreeIterator
for n := t.root; n != nil; n = n.children[0] {
ti.stack = append(ti.stack, &stackElem{n, 0})
if len(n.children) == 0 {
break
}
}
return &ti
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mirrors_cockroachdb/cockroach.git
git@gitee.com:mirrors_cockroachdb/cockroach.git
mirrors_cockroachdb
cockroach
cockroach
v1.1.0

搜索帮助