代码拉取完成,页面将自动刷新
"""
This script provides an example to wrap UER-py for NER.
"""
import random
import argparse
import json
import torch
import torch.nn as nn
from uer.layers import *
from uer.encoders import *
from uer.utils.config import load_hyperparam
from uer.utils.optimizers import *
from uer.utils.constants import *
from uer.utils.vocab import Vocab
from uer.utils.seed import set_seed
from uer.utils.tokenizers import *
from uer.model_saver import save_model
from uer.opts import finetune_opts
from run_classifier import build_optimizer, load_or_initialize_parameters
class NerTagger(nn.Module):
def __init__(self, args):
super(NerTagger, self).__init__()
self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab))
self.encoder = str2encoder[args.encoder](args)
self.labels_num = args.labels_num
self.output_layer = nn.Linear(args.hidden_size, self.labels_num)
def forward(self, src, tgt, seg):
"""
Args:
src: [batch_size x seq_length]
tgt: [batch_size x seq_length]
seg: [batch_size x seq_length]
Returns:
loss: Sequence labeling loss.
logits: Output logits.
"""
# Embedding.
emb = self.embedding(src, seg)
# Encoder.
output = self.encoder(emb, seg)
# Target.
logits = self.output_layer(output).contiguous().view(-1, self.labels_num)
if tgt is not None:
tgt = tgt.contiguous().view(-1,1)
one_hot = torch.zeros(tgt.size(0), self.labels_num). \
to(torch.device(tgt.device)). \
scatter_(1, tgt, 1.0)
numerator = -torch.sum(nn.LogSoftmax(dim=-1)(logits) * one_hot, 1)
tgt = tgt.contiguous().view(-1)
tgt_mask = (tgt < self.labels_num - 1).float().to(torch.device(tgt.device))
numerator = torch.sum(tgt_mask * numerator)
denominator = torch.sum(tgt_mask) + 1e-6
loss = numerator / denominator
return loss, logits
else:
return None, logits
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.strip().split("\t")):
columns[column_name] = i
continue
line = line.strip().split("\t")
labels = line[columns["label"]]
tgt = [args.l2i[l] for l in labels.split(" ")]
text_a = line[columns["text_a"]]
src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[: args.seq_length]
tgt = tgt[: args.seq_length]
seg = seg[: args.seq_length]
while len(src) < args.seq_length:
src.append(0)
tgt.append(args.labels_num - 1)
seg.append(0)
dataset.append([src, tgt, seg])
return dataset
def batch_loader(batch_size, src, tgt, seg):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_batch = tgt[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_batch, seg_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_batch = tgt[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_batch, seg_batch
def train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, _ = model(src_batch, tgt_batch, seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.LongTensor([sample[0] for sample in dataset])
tgt = torch.LongTensor([sample[1] for sample in dataset])
seg = torch.LongTensor([sample[2] for sample in dataset])
instances_num = src.size(0)
batch_size = args.batch_size
correct, gold_entities_num, pred_entities_num = 0, 0, 0
args.model.eval()
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)):
src_batch = src_batch.to(args.device)
tgt_batch = tgt_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, logits = args.model(src_batch, tgt_batch, seg_batch)
pred = logits.argmax(dim=-1)
gold = tgt_batch.contiguous().view(-1, 1)
for j in range(gold.size()[0]):
if gold[j].item() in args.begin_ids:
gold_entities_num += 1
for j in range(pred.size()[0]):
if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]:
pred_entities_num += 1
pred_entities_pos, gold_entities_pos = set(), set()
for j in range(gold.size()[0]):
if gold[j].item() in args.begin_ids:
start = j
for k in range(j + 1, gold.size()[0]):
if gold[k].item() == args.l2i["[PAD]"] or gold[k].item() == args.l2i["O"] or gold[k].item() in args.begin_ids:
end = k - 1
break
else:
end = gold.size()[0] - 1
gold_entities_pos.add((start, end))
for j in range(pred.size()[0]):
if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]:
start = j
for k in range(j + 1, pred.size()[0]):
if pred[k].item() == args.l2i["[PAD]"] or pred[k].item() == args.l2i["O"] or pred[k].item() in args.begin_ids:
end = k - 1
break
else:
end = pred.size()[0] - 1
pred_entities_pos.add((start, end))
for entity in pred_entities_pos:
if entity not in gold_entities_pos:
continue
for j in range(entity[0], entity[1] + 1):
if gold[j].item() != pred[j].item():
break
else:
correct += 1
print("Report precision, recall, and f1:")
p = correct / pred_entities_num
r = correct / gold_entities_num
f1 = 2 * p * r / (p + r)
print("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1))
return f1
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
parser.add_argument("--label2id_path", type=str, required=True,
help="Path of the label2id file.")
args = parser.parse_args()
# Load the hyperparameters of the config file.
args = load_hyperparam(args)
set_seed(args.seed)
args.begin_ids = []
with open(args.label2id_path, mode="r", encoding="utf-8") as f:
l2i = json.load(f)
print("Labels: ", l2i)
l2i["[PAD]"] = len(l2i)
for label in l2i:
if label.startswith("B"):
args.begin_ids.append(l2i[label])
args.l2i = l2i
args.labels_num = len(l2i)
args.tokenizer = SpaceTokenizer(args)
# Build sequence labeling model.
model = NerTagger(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
instances = read_dataset(args, args.train_path)
src = torch.LongTensor([ins[0] for ins in instances])
tgt = torch.LongTensor([ins[1] for ins in instances])
seg = torch.LongTensor([ins[2] for ins in instances])
instances_num = src.size(0)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level = args.fp16_opt_level)
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, f1, best_f1 = 0.0, 0.0, 0.0
print("Start training.")
for epoch in range(1, args.epochs_num + 1):
model.train()
for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)):
loss = train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
f1 = evaluate(args, read_dataset(args, args.dev_path))
if f1 > best_f1:
best_f1 = f1
save_model(model, args.output_model_path)
else:
continue
# Evaluation phase.
if args.test_path is not None:
print("Test set evaluation.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。