1 Star 3 Fork 4

OAKChina/depthai-python

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
spatial_tiny_yolo.py 8.72 KB
一键复制 编辑 原始数据 按行查看 历史
#!/usr/bin/env python3
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
import time
'''
Spatial Tiny-yolo example
Performs inference on RGB camera and retrieves spatial location coordinates: x,y,z relative to the center of depth map.
Can be used for tiny-yolo-v3 or tiny-yolo-v4 networks
'''
# Get argument first
nnBlobPath = str((Path(__file__).parent / Path('../models/yolo-v4-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
if 1 < len(sys.argv):
arg = sys.argv[1]
if arg == "yolo3":
nnBlobPath = str((Path(__file__).parent / Path('../models/yolo-v3-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
elif arg == "yolo4":
nnBlobPath = str((Path(__file__).parent / Path('../models/yolo-v4-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
else:
nnBlobPath = arg
else:
print("Using Tiny YoloV4 model. If you wish to use Tiny YOLOv3, call 'tiny_yolo.py yolo3'")
if not Path(nnBlobPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
# Tiny yolo v3/4 label texts
labelMap = [
"person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train",
"truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
"bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie",
"suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup",
"fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich",
"orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake",
"chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors",
"teddy bear", "hair drier", "toothbrush"
]
syncNN = True
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
spatialDetectionNetwork = pipeline.create(dai.node.YoloSpatialDetectionNetwork)
monoLeft = pipeline.create(dai.node.MonoCamera)
monoRight = pipeline.create(dai.node.MonoCamera)
stereo = pipeline.create(dai.node.StereoDepth)
nnNetworkOut = pipeline.create(dai.node.XLinkOut)
xoutRgb = pipeline.create(dai.node.XLinkOut)
xoutNN = pipeline.create(dai.node.XLinkOut)
xoutDepth = pipeline.create(dai.node.XLinkOut)
xoutRgb.setStreamName("rgb")
xoutNN.setStreamName("detections")
xoutDepth.setStreamName("depth")
nnNetworkOut.setStreamName("nnNetwork")
# Properties
camRgb.setPreviewSize(416, 416)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setCamera("left")
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setCamera("right")
# setting node configs
stereo.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
# Align depth map to the perspective of RGB camera, on which inference is done
stereo.setDepthAlign(dai.CameraBoardSocket.CAM_A)
stereo.setOutputSize(monoLeft.getResolutionWidth(), monoLeft.getResolutionHeight())
stereo.setSubpixel(True)
spatialDetectionNetwork.setBlobPath(nnBlobPath)
spatialDetectionNetwork.setConfidenceThreshold(0.5)
spatialDetectionNetwork.input.setBlocking(False)
spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)
spatialDetectionNetwork.setDepthLowerThreshold(100)
spatialDetectionNetwork.setDepthUpperThreshold(5000)
# Yolo specific parameters
spatialDetectionNetwork.setNumClasses(80)
spatialDetectionNetwork.setCoordinateSize(4)
spatialDetectionNetwork.setAnchors([10,14, 23,27, 37,58, 81,82, 135,169, 344,319])
spatialDetectionNetwork.setAnchorMasks({ "side26": [1,2,3], "side13": [3,4,5] })
spatialDetectionNetwork.setIouThreshold(0.5)
# Linking
monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)
camRgb.preview.link(spatialDetectionNetwork.input)
if syncNN:
spatialDetectionNetwork.passthrough.link(xoutRgb.input)
else:
camRgb.preview.link(xoutRgb.input)
spatialDetectionNetwork.out.link(xoutNN.input)
stereo.depth.link(spatialDetectionNetwork.inputDepth)
spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)
spatialDetectionNetwork.outNetwork.link(nnNetworkOut.input)
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
# Output queues will be used to get the rgb frames and nn data from the outputs defined above
previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)
networkQueue = device.getOutputQueue(name="nnNetwork", maxSize=4, blocking=False)
startTime = time.monotonic()
counter = 0
fps = 0
color = (255, 255, 255)
printOutputLayersOnce = True
while True:
inPreview = previewQueue.get()
inDet = detectionNNQueue.get()
depth = depthQueue.get()
inNN = networkQueue.get()
if printOutputLayersOnce:
toPrint = 'Output layer names:'
for ten in inNN.getAllLayerNames():
toPrint = f'{toPrint} {ten},'
print(toPrint)
printOutputLayersOnce = False
frame = inPreview.getCvFrame()
depthFrame = depth.getFrame() # depthFrame values are in millimeters
depth_downscaled = depthFrame[::4]
if np.all(depth_downscaled == 0):
min_depth = 0 # Set a default minimum depth value when all elements are zero
else:
min_depth = np.percentile(depth_downscaled[depth_downscaled != 0], 1)
max_depth = np.percentile(depth_downscaled, 99)
depthFrameColor = np.interp(depthFrame, (min_depth, max_depth), (0, 255)).astype(np.uint8)
depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
counter+=1
current_time = time.monotonic()
if (current_time - startTime) > 1 :
fps = counter / (current_time - startTime)
counter = 0
startTime = current_time
detections = inDet.detections
# If the frame is available, draw bounding boxes on it and show the frame
height = frame.shape[0]
width = frame.shape[1]
for detection in detections:
roiData = detection.boundingBoxMapping
roi = roiData.roi
roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
topLeft = roi.topLeft()
bottomRight = roi.bottomRight()
xmin = int(topLeft.x)
ymin = int(topLeft.y)
xmax = int(bottomRight.x)
ymax = int(bottomRight.y)
cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, 1)
# Denormalize bounding box
x1 = int(detection.xmin * width)
x2 = int(detection.xmax * width)
y1 = int(detection.ymin * height)
y2 = int(detection.ymax * height)
try:
label = labelMap[detection.label]
except:
label = detection.label
cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, "{:.2f}".format(detection.confidence*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)
cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)
cv2.imshow("depth", depthFrameColor)
cv2.imshow("rgb", frame)
if cv2.waitKey(1) == ord('q'):
break
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/oakchina/depthai-python.git
git@gitee.com:oakchina/depthai-python.git
oakchina
depthai-python
depthai-python
main

搜索帮助