1 Star 3 Fork 4

OAKChina/depthai-python

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
rgb_encoding_mono_mobilenet_depth.py 6.79 KB
一键复制 编辑 原始数据 按行查看 历史
#!/usr/bin/env python3
from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
# Get argument first
nnPath = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
nnPath = sys.argv[1]
if not Path(nnPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
# MobilenetSSD label texts
labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
"diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
# Create pipeline
pipeline = dai.Pipeline()
# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
videoEncoder = pipeline.create(dai.node.VideoEncoder)
monoRight = pipeline.create(dai.node.MonoCamera)
monoLeft = pipeline.create(dai.node.MonoCamera)
depth = pipeline.create(dai.node.StereoDepth)
manip = pipeline.create(dai.node.ImageManip)
nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
videoOut = pipeline.create(dai.node.XLinkOut)
xoutRight = pipeline.create(dai.node.XLinkOut)
disparityOut = pipeline.create(dai.node.XLinkOut)
manipOut = pipeline.create(dai.node.XLinkOut)
nnOut = pipeline.create(dai.node.XLinkOut)
videoOut.setStreamName('h265')
xoutRight.setStreamName('right')
disparityOut.setStreamName('disparity')
manipOut.setStreamName('manip')
nnOut.setStreamName('nn')
# Properties
camRgb.setBoardSocket(dai.CameraBoardSocket.CAM_A)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
monoRight.setCamera("right")
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setCamera("left")
monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
videoEncoder.setDefaultProfilePreset(30, dai.VideoEncoderProperties.Profile.H265_MAIN)
depth.setDefaultProfilePreset(dai.node.StereoDepth.PresetMode.HIGH_DENSITY)
depth.setRectifyEdgeFillColor(0) # Black, to better see the cutout
nn.setConfidenceThreshold(0.5)
nn.setBlobPath(nnPath)
nn.setNumInferenceThreads(2)
nn.input.setBlocking(False)
# The NN model expects BGR input. By default ImageManip output type would be same as input (gray in this case)
manip.initialConfig.setFrameType(dai.ImgFrame.Type.BGR888p)
manip.initialConfig.setResize(300, 300)
# Linking
camRgb.video.link(videoEncoder.input)
videoEncoder.bitstream.link(videoOut.input)
monoRight.out.link(xoutRight.input)
monoRight.out.link(depth.right)
monoLeft.out.link(depth.left)
depth.disparity.link(disparityOut.input)
depth.rectifiedRight.link(manip.inputImage)
manip.out.link(nn.input)
manip.out.link(manipOut.input)
nn.out.link(nnOut.input)
# Disparity range is used for normalization
disparityMultiplier = 255 / depth.initialConfig.getMaxDisparity()
# Connect to device and start pipeline
with dai.Device(pipeline) as device:
queueSize = 8
qRight = device.getOutputQueue("right", queueSize)
qDisparity = device.getOutputQueue("disparity", queueSize)
qManip = device.getOutputQueue("manip", queueSize)
qDet = device.getOutputQueue("nn", queueSize)
qRgbEnc = device.getOutputQueue('h265', maxSize=30, blocking=True)
frame = None
frameManip = None
frameDisparity = None
detections = []
offsetX = (monoRight.getResolutionWidth() - monoRight.getResolutionHeight()) // 2
color = (255, 0, 0)
croppedFrame = np.zeros((monoRight.getResolutionHeight(), monoRight.getResolutionHeight()))
def frameNorm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
videoFile = open('video.h265', 'wb')
cv2.namedWindow("right", cv2.WINDOW_NORMAL)
cv2.namedWindow("manip", cv2.WINDOW_NORMAL)
while True:
inRight = qRight.tryGet()
inManip = qManip.tryGet()
inDet = qDet.tryGet()
inDisparity = qDisparity.tryGet()
while qRgbEnc.has():
qRgbEnc.get().getData().tofile(videoFile)
if inRight is not None:
frame = inRight.getCvFrame()
if inManip is not None:
frameManip = inManip.getCvFrame()
if inDisparity is not None:
# Apply color map for better visualization
frameDisparity = inDisparity.getCvFrame()
frameDisparity = (frameDisparity*disparityMultiplier).astype(np.uint8)
frameDisparity = cv2.applyColorMap(frameDisparity, cv2.COLORMAP_JET)
if inDet is not None:
detections = inDet.detections
if frame is not None:
for detection in detections:
bbox = frameNorm(croppedFrame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
bbox[::2] += offsetX
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
# Show the right cam frame
cv2.imshow("right", frame)
if frameDisparity is not None:
for detection in detections:
bbox = frameNorm(croppedFrame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
bbox[::2] += offsetX
cv2.rectangle(frameDisparity, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
cv2.putText(frameDisparity, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frameDisparity, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
# Show the disparity frame
cv2.imshow("disparity", frameDisparity)
if frameManip is not None:
for detection in detections:
bbox = frameNorm(frameManip, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
cv2.rectangle(frameManip, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
cv2.putText(frameManip, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
cv2.putText(frameManip, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
# Show the manip frame
cv2.imshow("manip", frameManip)
if cv2.waitKey(1) == ord('q'):
break
print("To view the encoded data, convert the stream file (.h265) into a video file (.mp4) using a command below:")
print("ffmpeg -framerate 30 -i video.h265 -c copy video.mp4")
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/oakchina/depthai-python.git
git@gitee.com:oakchina/depthai-python.git
oakchina
depthai-python
depthai-python
main

搜索帮助