Ai
1 Star 0 Fork 0

OpenBayes/MODNet

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
inference.py 3.05 KB
一键复制 编辑 原始数据 按行查看 历史
ZHKe 提交于 2020-12-07 13:55 +08:00 . upload portrait image/video matting demos of MODNet
import os
import sys
import argparse
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from src.models.modnet import MODNet
if __name__ == '__main__':
# define cmd arguments
parser = argparse.ArgumentParser()
parser.add_argument('--input-path', type=str, help='path of input images')
parser.add_argument('--output-path', type=str, help='path of output images')
parser.add_argument('--ckpt-path', type=str, help='path of pre-trained MODNet')
args = parser.parse_args()
# check input arguments
if not os.path.exists(args.input_path):
print('Cannot find input path: {0}'.format(args.input_path))
exit()
if not os.path.exists(args.output_path):
print('Cannot find output path: {0}'.format(args.output_path))
exit()
if not os.path.exists(args.ckpt_path):
print('Cannot find ckpt path: {0}'.format(args.ckpt_path))
exit()
# define hyper-parameters
ref_size = 512
# define image to tensor transform
im_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
)
# create MODNet and load the pre-trained ckpt
modnet = MODNet(backbone_pretrained=False)
modnet = nn.DataParallel(modnet).cuda()
modnet.load_state_dict(torch.load(args.ckpt_path))
modnet.eval()
# inference images
im_names = os.listdir(args.input_path)
for im_name in im_names:
print('Process image: {0}'.format(im_name))
# read image
im = Image.open(os.path.join(args.input_path, im_name))
# unify image channels to 3
im = np.asarray(im)
if len(im.shape) == 2:
im = im[:, :, None]
if im.shape[2] == 1:
im = np.repeat(im, 3, axis=2)
elif im.shape[2] == 4:
im = im[:, :, 0:3]
# convert image to PyTorch tensor
im = Image.fromarray(im)
im = im_transform(im)
# add mini-batch dim
im = im[None, :, :, :]
# resize image for input
im_b, im_c, im_h, im_w = im.shape
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
if im_w >= im_h:
im_rh = ref_size
im_rw = int(im_w / im_h * ref_size)
elif im_w < im_h:
im_rw = ref_size
im_rh = int(im_h / im_w * ref_size)
else:
im_rh = im_h
im_rw = im_w
im_rw = im_rw - im_rw % 32
im_rh = im_rh - im_rh % 32
im = F.interpolate(im, size=(im_rh, im_rw), mode='area')
# inference
_, _, matte = modnet(im.cuda(), inference=False)
# resize and save matte
matte = F.interpolate(matte, size=(im_h, im_w), mode='area')
matte = matte[0][0].data.cpu().numpy()
matte_name = im_name.split('.')[0] + '.png'
Image.fromarray(((matte * 255).astype('uint8')), mode='L').save(os.path.join(args.output_path, matte_name))
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/openbayes/MODNet.git
git@gitee.com:openbayes/MODNet.git
openbayes
MODNet
MODNet
master

搜索帮助