登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
代码拉取完成,页面将自动刷新
开源项目
>
数据库相关
>
数据库服务
&&
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
443
Star
1.5K
Fork
1.8K
openGauss
/
openGauss-server
代码
Issues
973
Pull Requests
166
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
【测试类型:SQL功能】【测试版本:5.1.1】【资源池化】开启spq,spqplugin.spq_enable_adaptive_scan=on,query_dop=8,TPCDS Q14 第二条语句执行时查询节点coredump
已验收
#I8GWOI
缺陷
songjing
创建于
2023-11-16 11:01
<!-- #请认真填写以下信息,否则可能由于无法定位,导致issue无法解决而被取消 --> 【标题描述】:开启spq,spqplugin.spq_enable_adaptive_scan=on,query_dop=8,TPCDS Q14 第二条语句执行时查询节点coredump 【测试类型:SQL功能】【测试版本:5.1.1】【资源池化】开启spq,spqplugin.spq_enable_adaptive_scan=on,query_dop=8,TPCDS Q14 第二条语句执行时查询节点coredump 【操作系统和硬件信息】(查询命令: cat /etc/system-release, uname -a): openEuler release 20.03 (LTS-SP3) Linux openGauss117 4.19.90-2303.4.0.0193.oe1.aarch64 #1 SMP Wed Mar 22 03:04:16 UTC 2023 aarch64 aarch64 aarch64 GNU/Linux 【测试环境】(单机/1主x备x级联备): 一主两备 【被测功能】:spq多机并行 【测试类型】:功能测试 【数据库版本】(查询命令: gaussdb -V): gaussdb (openGauss 5.1.1 build 5099d94c) compiled at 2023-11-08 14:52:29 commit 0 last mr 【预置条件】:TPCDS 100GB数据 gs_guc set -N all -I all -c"shared_preload_libraries='security_plugin,spqplugin'" spqplugin.enable_spq = on spqplugin.cluster_map = 'xxx|xxx|xxx|xxx|xxx|xxx,...,...' shared_buffers=300GB 【操作步骤】(请填写详细的操作步骤): ``` --1.查询Q14语句 set query_dop = 8; set spqplugin.spq_enable_adaptive_scan to on; with cross_items as (select i_item_sk ss_item_sk from item, (select iss.i_brand_id brand_id ,iss.i_class_id class_id ,iss.i_category_id category_id from store_sales ,item iss ,date_dim d1 where ss_item_sk = iss.i_item_sk and ss_sold_date_sk = d1.d_date_sk and d1.d_year between 1998 AND 1998 + 2 intersect select ics.i_brand_id ,ics.i_class_id ,ics.i_category_id from catalog_sales ,item ics ,date_dim d2 where cs_item_sk = ics.i_item_sk and cs_sold_date_sk = d2.d_date_sk and d2.d_year between 1998 AND 1998 + 2 intersect select iws.i_brand_id ,iws.i_class_id ,iws.i_category_id from web_sales ,item iws ,date_dim d3 where ws_item_sk = iws.i_item_sk and ws_sold_date_sk = d3.d_date_sk and d3.d_year between 1998 AND 1998 + 2) x where i_brand_id = brand_id and i_class_id = class_id and i_category_id = category_id ), avg_sales as (select avg(quantity*list_price) average_sales from (select ss_quantity quantity ,ss_list_price list_price from store_sales ,date_dim where ss_sold_date_sk = d_date_sk and d_year between 1998 and 1998 + 2 union all select cs_quantity quantity ,cs_list_price list_price from catalog_sales ,date_dim where cs_sold_date_sk = d_date_sk and d_year between 1998 and 1998 + 2 union all select ws_quantity quantity ,ws_list_price list_price from web_sales ,date_dim where ws_sold_date_sk = d_date_sk and d_year between 1998 and 1998 + 2) x) select * from ( select this_year.channel ty_channel ,this_year.i_brand_id ty_brand ,this_year.i_class_id ty_class ,this_year.i_category_id ty_category ,this_year.sales ty_sales ,this_year.number_sales ty_number_sales ,last_year.channel ly_channel ,last_year.i_brand_id ly_brand ,last_year.i_class_id ly_class ,last_year.i_category_id ly_category ,last_year.sales ly_sales ,last_year.number_sales ly_number_sales from (select 'store' channel, i_brand_id,i_class_id,i_category_id ,sum(ss_quantity*ss_list_price) sales, count(*) number_sales from store_sales ,item ,date_dim where ss_item_sk in (select ss_item_sk from cross_items) and ss_item_sk = i_item_sk and ss_sold_date_sk = d_date_sk and d_week_seq = (select d_week_seq from date_dim where d_year = 1998 + 1 and d_moy = 12 and d_dom = 16) group by i_brand_id,i_class_id,i_category_id having sum(ss_quantity*ss_list_price) > (select average_sales from avg_sales)) this_year, (select 'store' channel, i_brand_id,i_class_id ,i_category_id, sum(ss_quantity*ss_list_price) sales, count(*) number_sales from store_sales ,item ,date_dim where ss_item_sk in (select ss_item_sk from cross_items) and ss_item_sk = i_item_sk and ss_sold_date_sk = d_date_sk and d_week_seq = (select d_week_seq from date_dim where d_year = 1998 and d_moy = 12 and d_dom = 16) group by i_brand_id,i_class_id,i_category_id having sum(ss_quantity*ss_list_price) > (select average_sales from avg_sales)) last_year where this_year.i_brand_id= last_year.i_brand_id and this_year.i_class_id = last_year.i_class_id and this_year.i_category_id = last_year.i_category_id order by this_year.channel, this_year.i_brand_id, this_year.i_class_id, this_year.i_category_id ) limit 100; ``` 【预期输出】:查询成功  【实际输出】:查询节点core  【原因分析】: 1. 这个问题的根因 2. 问题推断过程 3. 还有哪些原因可能造成类似现象 4. 该问题是否有临时规避措施 5. 问题解决方案 6. 预计修复问题时间 【日志信息】(请附上日志文件、截图、coredump信息): ``` #0 0x0000aaad58ef23ec in sys_wait4 (ru=0x0, options=options@entry=1073741824, stat_addr=stat_addr@entry=0xff9f696470cc, upid=upid@entry=2330057) at bbox_syscall_support.cpp:36 #1 sys_waitpid (pid=pid@entry=2330057, status=status@entry=0xff9f696470cc, options=options@entry=1073741824) at bbox_syscall_support.cpp:516 #2 0x0000aaad58ef37e8 in BBOX_GetClonePidResult (iClonePid=iClonePid@entry=2330057, pstArgs=pstArgs@entry=0xff9f69647150, iCloneErrno=iCloneErrno@entry=9) at bbox_threads.cpp:572 #3 0x0000aaad58ef3b28 in BBOX_GetAllThreads (enType=<optimized out>, pDone=pDone@entry=0xaaad58eea6d0 <BBOX_FinishDumpFile(void*)>, pDoneArgs=pDoneArgs@entry=0xff9f69647298, pCallback=<optimized out>) at bbox_threads.cpp:700 #4 0x0000aaad58eea98c in BBOX_CreateCoredump (file_name=0xff9f696473c8 "/home/core//core-gaussdb-1067650-2023_11_15_19_46_50-bbox.lz4", file_name@entry=0x0) at bbox_create.cpp:440 #5 0x0000aaad58ef5494 in bbox_handler (sig=11, si=0xff9f69647900, uc=<optimized out>) at gs_bbox.cpp:112 #6 bbox_handler (sig=11, si=0xff9f69647900, uc=<optimized out>) at gs_bbox.cpp:102 #7 <signal handler called> #8 check_match_and_update_state (has_finished=<synthetic pointer>, seqReq=0xff9f69648c58, p_state=0x0) at execRemote.cpp:721 #9 adps_get_response_block (seqReq=seqReq@entry=0xff9f69648c58, node_idx=0) at execRemote.cpp:721 #10 0x0000aaad58d888b0 in spq_adps_consumer () at execRemote.cpp:1146 #11 0x0000aaad58d88a58 in spq_adps_coordinator_thread_main () at execRemote.cpp:1164 #12 0x0000aaad591d1104 in GaussDbThreadMain<(knl_thread_role)68> (arg=<optimized out>) at postmaster.cpp:11764 #13 0x0000aaad591b0644 in InternalThreadFunc (args=<optimized out>) at postmaster.cpp:14563 #14 0x0000fffee118878c in start_thread (arg=0xff9f8b4396d0) at pthread_create.c:486 #15 0x0000fffee10d511c in thread_start () at ../sysdeps/unix/sysv/linux/aarch64/clone.S:80 ``` 【测试代码】:无
<!-- #请认真填写以下信息,否则可能由于无法定位,导致issue无法解决而被取消 --> 【标题描述】:开启spq,spqplugin.spq_enable_adaptive_scan=on,query_dop=8,TPCDS Q14 第二条语句执行时查询节点coredump 【测试类型:SQL功能】【测试版本:5.1.1】【资源池化】开启spq,spqplugin.spq_enable_adaptive_scan=on,query_dop=8,TPCDS Q14 第二条语句执行时查询节点coredump 【操作系统和硬件信息】(查询命令: cat /etc/system-release, uname -a): openEuler release 20.03 (LTS-SP3) Linux openGauss117 4.19.90-2303.4.0.0193.oe1.aarch64 #1 SMP Wed Mar 22 03:04:16 UTC 2023 aarch64 aarch64 aarch64 GNU/Linux 【测试环境】(单机/1主x备x级联备): 一主两备 【被测功能】:spq多机并行 【测试类型】:功能测试 【数据库版本】(查询命令: gaussdb -V): gaussdb (openGauss 5.1.1 build 5099d94c) compiled at 2023-11-08 14:52:29 commit 0 last mr 【预置条件】:TPCDS 100GB数据 gs_guc set -N all -I all -c"shared_preload_libraries='security_plugin,spqplugin'" spqplugin.enable_spq = on spqplugin.cluster_map = 'xxx|xxx|xxx|xxx|xxx|xxx,...,...' shared_buffers=300GB 【操作步骤】(请填写详细的操作步骤): ``` --1.查询Q14语句 set query_dop = 8; set spqplugin.spq_enable_adaptive_scan to on; with cross_items as (select i_item_sk ss_item_sk from item, (select iss.i_brand_id brand_id ,iss.i_class_id class_id ,iss.i_category_id category_id from store_sales ,item iss ,date_dim d1 where ss_item_sk = iss.i_item_sk and ss_sold_date_sk = d1.d_date_sk and d1.d_year between 1998 AND 1998 + 2 intersect select ics.i_brand_id ,ics.i_class_id ,ics.i_category_id from catalog_sales ,item ics ,date_dim d2 where cs_item_sk = ics.i_item_sk and cs_sold_date_sk = d2.d_date_sk and d2.d_year between 1998 AND 1998 + 2 intersect select iws.i_brand_id ,iws.i_class_id ,iws.i_category_id from web_sales ,item iws ,date_dim d3 where ws_item_sk = iws.i_item_sk and ws_sold_date_sk = d3.d_date_sk and d3.d_year between 1998 AND 1998 + 2) x where i_brand_id = brand_id and i_class_id = class_id and i_category_id = category_id ), avg_sales as (select avg(quantity*list_price) average_sales from (select ss_quantity quantity ,ss_list_price list_price from store_sales ,date_dim where ss_sold_date_sk = d_date_sk and d_year between 1998 and 1998 + 2 union all select cs_quantity quantity ,cs_list_price list_price from catalog_sales ,date_dim where cs_sold_date_sk = d_date_sk and d_year between 1998 and 1998 + 2 union all select ws_quantity quantity ,ws_list_price list_price from web_sales ,date_dim where ws_sold_date_sk = d_date_sk and d_year between 1998 and 1998 + 2) x) select * from ( select this_year.channel ty_channel ,this_year.i_brand_id ty_brand ,this_year.i_class_id ty_class ,this_year.i_category_id ty_category ,this_year.sales ty_sales ,this_year.number_sales ty_number_sales ,last_year.channel ly_channel ,last_year.i_brand_id ly_brand ,last_year.i_class_id ly_class ,last_year.i_category_id ly_category ,last_year.sales ly_sales ,last_year.number_sales ly_number_sales from (select 'store' channel, i_brand_id,i_class_id,i_category_id ,sum(ss_quantity*ss_list_price) sales, count(*) number_sales from store_sales ,item ,date_dim where ss_item_sk in (select ss_item_sk from cross_items) and ss_item_sk = i_item_sk and ss_sold_date_sk = d_date_sk and d_week_seq = (select d_week_seq from date_dim where d_year = 1998 + 1 and d_moy = 12 and d_dom = 16) group by i_brand_id,i_class_id,i_category_id having sum(ss_quantity*ss_list_price) > (select average_sales from avg_sales)) this_year, (select 'store' channel, i_brand_id,i_class_id ,i_category_id, sum(ss_quantity*ss_list_price) sales, count(*) number_sales from store_sales ,item ,date_dim where ss_item_sk in (select ss_item_sk from cross_items) and ss_item_sk = i_item_sk and ss_sold_date_sk = d_date_sk and d_week_seq = (select d_week_seq from date_dim where d_year = 1998 and d_moy = 12 and d_dom = 16) group by i_brand_id,i_class_id,i_category_id having sum(ss_quantity*ss_list_price) > (select average_sales from avg_sales)) last_year where this_year.i_brand_id= last_year.i_brand_id and this_year.i_class_id = last_year.i_class_id and this_year.i_category_id = last_year.i_category_id order by this_year.channel, this_year.i_brand_id, this_year.i_class_id, this_year.i_category_id ) limit 100; ``` 【预期输出】:查询成功  【实际输出】:查询节点core  【原因分析】: 1. 这个问题的根因 2. 问题推断过程 3. 还有哪些原因可能造成类似现象 4. 该问题是否有临时规避措施 5. 问题解决方案 6. 预计修复问题时间 【日志信息】(请附上日志文件、截图、coredump信息): ``` #0 0x0000aaad58ef23ec in sys_wait4 (ru=0x0, options=options@entry=1073741824, stat_addr=stat_addr@entry=0xff9f696470cc, upid=upid@entry=2330057) at bbox_syscall_support.cpp:36 #1 sys_waitpid (pid=pid@entry=2330057, status=status@entry=0xff9f696470cc, options=options@entry=1073741824) at bbox_syscall_support.cpp:516 #2 0x0000aaad58ef37e8 in BBOX_GetClonePidResult (iClonePid=iClonePid@entry=2330057, pstArgs=pstArgs@entry=0xff9f69647150, iCloneErrno=iCloneErrno@entry=9) at bbox_threads.cpp:572 #3 0x0000aaad58ef3b28 in BBOX_GetAllThreads (enType=<optimized out>, pDone=pDone@entry=0xaaad58eea6d0 <BBOX_FinishDumpFile(void*)>, pDoneArgs=pDoneArgs@entry=0xff9f69647298, pCallback=<optimized out>) at bbox_threads.cpp:700 #4 0x0000aaad58eea98c in BBOX_CreateCoredump (file_name=0xff9f696473c8 "/home/core//core-gaussdb-1067650-2023_11_15_19_46_50-bbox.lz4", file_name@entry=0x0) at bbox_create.cpp:440 #5 0x0000aaad58ef5494 in bbox_handler (sig=11, si=0xff9f69647900, uc=<optimized out>) at gs_bbox.cpp:112 #6 bbox_handler (sig=11, si=0xff9f69647900, uc=<optimized out>) at gs_bbox.cpp:102 #7 <signal handler called> #8 check_match_and_update_state (has_finished=<synthetic pointer>, seqReq=0xff9f69648c58, p_state=0x0) at execRemote.cpp:721 #9 adps_get_response_block (seqReq=seqReq@entry=0xff9f69648c58, node_idx=0) at execRemote.cpp:721 #10 0x0000aaad58d888b0 in spq_adps_consumer () at execRemote.cpp:1146 #11 0x0000aaad58d88a58 in spq_adps_coordinator_thread_main () at execRemote.cpp:1164 #12 0x0000aaad591d1104 in GaussDbThreadMain<(knl_thread_role)68> (arg=<optimized out>) at postmaster.cpp:11764 #13 0x0000aaad591b0644 in InternalThreadFunc (args=<optimized out>) at postmaster.cpp:14563 #14 0x0000fffee118878c in start_thread (arg=0xff9f8b4396d0) at pthread_create.c:486 #15 0x0000fffee10d511c in thread_start () at ../sysdeps/unix/sysv/linux/aarch64/clone.S:80 ``` 【测试代码】:无
评论 (
3
)
登录
后才可以发表评论
状态
已验收
待办的
已确认
已答复
已取消
挂起
修复中
已完成
待回归
测试中
已验收
负责人
未设置
Mijamind
quemingjian
负责人
协作者
+负责人
+协作者
陈栋
chendong76
负责人
协作者
+负责人
+协作者
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
分支 (20)
标签 (30)
master
6.0.0
5.0.0
tp_poc
datavec_poc
7.0.0-RC2
7.0.0-RC1
master_bak08271930
bugfix_0725
3.0.0
iud_dev
dev_board
5.1.0
kms
2.0.0
3.1.0
2.1.0
1.1.0
1.0.1
1.0.0
v7.0.0-RC2
v6.0.2
v7.0.0-RC1
v6.0.1
v3.0.6
v6.0.0
v3.0.5B009
v5.0.3
v5.0.2
v6.0.0-RC1
v3.0.5
v5.0.1
v5.1.0
5.1.0
v5.0.0
v3.0.3
v3.1.1
v3.0.2
v3.1.0
v2.0.5
v3.0.1
v2.0.4
v2.0.3
v3.0.0
v2.1.0
v2.0.1
v2.0.0
v1.1.0
v1.0.1
v1.0.0
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(2)
C++
1
https://gitee.com/opengauss/openGauss-server.git
git@gitee.com:opengauss/openGauss-server.git
opengauss
openGauss-server
openGauss-server
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册