Ai
1 Star 2 Fork 0

ppnt/whisper-cpp-server

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
common.cpp 28.32 KB
一键复制 编辑 原始数据 按行查看 历史
Afrizal 提交于 2024-03-02 13:29 +08:00 . Organize third party module
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936
#define _USE_MATH_DEFINES // for M_PI
#include "common.h"
// third-party utilities
// use your favorite implementations
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#define DR_MP3_IMPLEMENTATION
#include "dr_mp3.h"
#include <samplerate.h>
#include <cmath>
#include <cstring>
#include <fstream>
#include <regex>
#include <locale>
#include <codecvt>
#include <sstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
// Function to check if the next argument exists
std::string get_next_arg(int &i, int argc, char **argv, const std::string &flag, gpt_params &params) {
if (i + 1 < argc && argv[i + 1][0] != '-') {
return argv[++i];
} else {
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
}
}
bool gpt_params_parse(int argc, char **argv, gpt_params &params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-np" || arg == "--n_parallel") {
params.n_parallel = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_k") {
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--top_p") {
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--temp") {
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--repeat-last-n") {
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--repeat-penalty") {
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-c" || arg == "--context") {
params.n_ctx = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "-m" || arg == "--model") {
params.model = get_next_arg(i, argc, argv, arg, params);
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "-ip" || arg == "--interactive-port") {
params.interactive = true;
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
exit(0);
} else if (arg == "-f" || arg == "--file") {
get_next_arg(i, argc, argv, arg, params);
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else if (arg == "-tt" || arg == "--token_test") {
params.token_test = get_next_arg(i, argc, argv, arg, params);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void gpt_print_usage(int /*argc*/, char **argv, const gpt_params &params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n",
params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " load prompt from a file\n");
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
fprintf(stderr, " test tokenization\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n",
params.repeat_last_n);
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n",
(double) params.repeat_penalty);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -c N, --context N context / KV cache size (default: %d)\n", params.n_ctx);
fprintf(stderr, " --ignore-eos ignore EOS token during generation\n");
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n",
params.n_gpu_layers);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
}
std::string gpt_random_prompt(std::mt19937 &rng) {
const int r = rng() % 10;
switch (r) {
case 0:
return "So";
case 1:
return "Once upon a time";
case 2:
return "When";
case 3:
return "The";
case 4:
return "After";
case 5:
return "If";
case 6:
return "import";
case 7:
return "He";
case 8:
return "She";
case 9:
return "They";
default:
return "To";
}
return "The";
}
std::string trim(const std::string &s) {
std::regex e("^\\s+|\\s+$");
return std::regex_replace(s, e, "");
}
std::string replace(const std::string &s, const std::string &from, const std::string &to) {
std::string result = s;
size_t pos = 0;
while ((pos = result.find(from, pos)) != std::string::npos) {
result.replace(pos, from.length(), to);
pos += to.length();
}
return result;
}
void gpt_vocab::add_special_token(const std::string &token) {
special_tokens.push_back(token);
}
std::map<std::string, int32_t> json_parse(const std::string &fname) {
std::map<std::string, int32_t> result;
// read file into string
std::string json;
{
std::ifstream ifs(fname);
if (!ifs) {
fprintf(stderr, "Failed to open %s\n", fname.c_str());
exit(1);
}
json = std::string((std::istreambuf_iterator<char>(ifs)),
(std::istreambuf_iterator<char>()));
}
if (json[0] != '{') {
return result;
}
// parse json
{
bool has_key = false;
bool in_token = false;
std::string str_key = "";
std::string str_val = "";
int n = json.size();
for (int i = 1; i < n; ++i) {
if (!in_token) {
if (json[i] == ' ') continue;
if (json[i] == '"') {
in_token = true;
continue;
}
} else {
if (json[i] == '\\' && i + 1 < n) {
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
++i;
} else if (json[i] == '"') {
if (has_key == false) {
has_key = true;
++i;
while (json[i] == ' ') ++i;
++i; // :
while (json[i] == ' ') ++i;
if (json[i] != '\"') {
while (json[i] != ',' && json[i] != '}') {
str_val += json[i++];
}
has_key = false;
} else {
in_token = true;
continue;
}
} else {
has_key = false;
}
str_key = ::replace(str_key, "\\u0120", " "); // \u0120 -> space
str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
try {
result[str_key] = std::stoi(str_val);
} catch (...) {
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
}
str_key = "";
str_val = "";
in_token = false;
continue;
}
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
}
}
}
return result;
}
std::string convert_to_utf8(const std::wstring &input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.to_bytes(input);
}
std::wstring convert_to_wstring(const std::string &input) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
return converter.from_bytes(input);
}
void gpt_split_words(std::string str, std::vector<std::string> &words) {
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
const std::regex re(pattern);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x: m) {
words.push_back(x);
}
str = m.suffix();
}
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab &vocab, const std::string &text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
std::string special_tokens_subpattern;
for (const auto &token: vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
}
std::regex re(special_tokens_subpattern);
std::smatch m;
// Split the text by special tokens.
while (std::regex_search(str, m, re)) {
// Split the substrings in-between special tokens into words.
gpt_split_words(m.prefix(), words);
// Add matched special tokens as words.
for (auto x: m) {
words.push_back(x);
}
str = m.suffix();
}
// Remaining text without special tokens will be handled below.
}
gpt_split_words(str, words);
}
// find the longest token that forms each word in words:
std::vector<gpt_vocab::id> tokens;
for (const auto &word: words) {
for (int i = 0; i < (int) word.size();) {
for (int j = word.size() - 1; j >= i; j--) {
auto cand = word.substr(i, j - i + 1);
auto it = vocab.token_to_id.find(cand);
if (it != vocab.token_to_id.end()) { // word.substr(i, j-i+1) in vocab
tokens.push_back(it->second);
i = j + 1;
break;
} else if (j == i) { // word.substr(i, 1) has no matching
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
i++;
}
}
}
}
return tokens;
}
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string &input, char delimiter) {
std::vector<gpt_vocab::id> output;
std::stringstream ss(input);
std::string token;
while (std::getline(ss, token, delimiter)) {
output.push_back(std::stoi(token));
}
return output;
}
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string &fpath_test) {
if (fpath_test.empty()) {
fprintf(stderr, "%s : No test file found.\n", __func__);
return std::map<std::string, std::vector<gpt_vocab::id>>();
}
std::map<std::string, std::vector<gpt_vocab::id>> tests;
auto fin = std::ifstream(fpath_test, std::ios_base::in);
const char *delimeter = " => ";
const char del_tok = ',';
std::string line;
while (std::getline(fin, line)) {
size_t delimiterPos = line.find(delimeter);
if (delimiterPos != std::string::npos) {
std::string text = line.substr(0, delimiterPos);
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
}
}
return tests;
}
void test_gpt_tokenizer(gpt_vocab &vocab, const std::string &fpath_test) {
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
size_t n_fails = 0;
for (const auto &test: tests) {
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
if (tokens != test.second) {
n_fails++;
// print out failure cases
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
fprintf(stderr, "%s : tokens in hf: ", __func__);
for (const auto &t: test.second) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s : tokens in ggml: ", __func__);
for (const auto &t: tokens) {
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
}
fprintf(stderr, "\n");
}
}
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
}
bool gpt_vocab_init(const std::string &fname, gpt_vocab &vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto &kv: vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab &vocab,
const float *logits,
int top_k,
double top_p,
double temp,
std::mt19937 &rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0 / temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i] * scale, i));
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> &a, const std::pair<double, gpt_vocab::id> &b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto &kv: logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto &kv: logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto &p: probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0 / cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
const gpt_vocab &vocab,
const float *logits,
const int32_t *last_n_tokens_data,
size_t last_n_tokens_data_size,
int top_k,
double top_p,
double temp,
int repeat_last_n,
float repeat_penalty,
std::mt19937 &rng) {
int n_logits = vocab.id_to_token.size();
const auto *plogits = logits;
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
if (temp <= 0) {
// select the token with the highest logit directly
float max_logit = plogits[0];
gpt_vocab::id max_id = 0;
for (int i = 1; i < n_logits; ++i) {
if (plogits[i] > max_logit) {
max_logit = plogits[i];
max_id = i;
}
}
return max_id;
}
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const float scale = 1.0f / temp;
for (int i = 0; i < n_logits; ++i) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (repeat_last_n > 0 &&
std::find(last_n_tokens.end() - repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (plogits[i] < 0.0f) {
logits_id.push_back(std::make_pair(plogits[i] * scale * repeat_penalty, i));
} else {
logits_id.push_back(std::make_pair(plogits[i] * scale / repeat_penalty, i));
}
} else {
logits_id.push_back(std::make_pair(plogits[i] * scale, i));
}
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> &a, const std::pair<double, gpt_vocab::id> &b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto &kv: logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto &kv: logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto &p: probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0 / cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
// printf("\n");
// for (int i = 0; i < (int) probs.size(); i++) {
// for (int i = 0; i < 10; i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
// }
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
bool resample(const float *input, size_t inputSampleRate, size_t inputSize,
std::vector<float> &output, size_t outputSampleRate) {
// Initialize Converter
int error;
SRC_STATE *src_state = src_new(SRC_SINC_FASTEST, 1, &error);
if (src_state == NULL) {
fprintf(stderr,"error %s\n",src_strerror(error));
return false;
}
// set convert param
SRC_DATA src_data;
src_data.data_in = input;
src_data.input_frames = inputSize;
src_data.data_out = new float[inputSize]; // assign size
src_data.output_frames = inputSize;
src_data.src_ratio = double(outputSampleRate) / inputSampleRate;
// convert
error = src_process(src_state, &src_data);
if (error) {
fprintf(stderr,"Error converting sample rate: %d",error);
delete[] src_data.data_out;
src_delete(src_state);
return false;
}
// Copy the transformed data into the output vector
output.assign(src_data.data_out, src_data.data_out + src_data.output_frames_gen);
// clean
delete[] src_data.data_out;
src_delete(src_state);
return true;
}
bool
read_wav(const std::string &fname, std::vector<float> &pcmf32, std::vector<std::vector<float>> &pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname == "-") {
{
uint8_t buf[1024];
while (true) {
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return false;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
} else if (drwav_init_file(&wav, fname.c_str(), nullptr) == false) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname.c_str());
return false;
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", __func__, fname.c_str());
return false;
}
if (stereo && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be stereo for diarization\n", __func__, fname.c_str());
return false;
}
if (wav.sampleRate != COMMON_SAMPLE_RATE) {
fprintf(stderr, "%s: WAV file '%s' must be %i kHz\n", __func__, fname.c_str(), COMMON_SAMPLE_RATE / 1000);
return false;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", __func__, fname.c_str());
return false;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size() /
(wav.channels * wav.bitsPerSample / 8);
std::vector<int16_t> pcm16;
pcm16.resize(n * wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i]) / 32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[2 * i] + pcm16[2 * i + 1]) / 65536.0f;
}
}
if (stereo) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2 * i]) / 32768.0f;
pcmf32s[1][i] = float(pcm16[2 * i + 1]) / 32768.0f;
}
}
return true;
}
bool read_mp3(const std::string &fname, std::vector<float> &pcmf32, bool stereo) {
drmp3 mp3;
if (!drmp3_init_file(&mp3, fname.c_str(), nullptr)) {
fprintf(stderr, "error: failed to open '%s' as MP3 file\n", fname.c_str());
return false;
}
if (mp3.channels != 1 && mp3.channels != 2) {
fprintf(stderr, "%s: MP3 file '%s' must be mono or stereo\n", __func__, fname.c_str());
return false;
}
if (stereo && mp3.channels != 2) {
fprintf(stderr, "%s: MP3 file '%s' must be stereo for this operation\n", __func__, fname.c_str());
return false;
}
drmp3_uint64 frameCount;
float *pSampleData = drmp3__full_read_and_close_f32(&mp3, nullptr, &frameCount);
bool isAllocated = false;
fprintf(stdout, "mp3.channels %d,mp3.sampleRate %d, frameCount:%llu\n", mp3.channels, mp3.sampleRate, frameCount);
if (!stereo && mp3.channels == 2) {
std::vector<float> monoData;
monoData.reserve(frameCount);
for (drmp3_uint64 i = 0; i < frameCount * 2; i += 2) {
monoData.push_back((pSampleData[i] + pSampleData[i + 1]) / 2);
}
drmp3_free(pSampleData, nullptr); // Releasing raw data
pSampleData = new float[monoData.size()]; // reallocate memory
std::copy(monoData.begin(), monoData.end(), pSampleData); // copy data
isAllocated = true;
frameCount = monoData.size();
mp3.channels = 1; // Update the number of channels
}
printf("mp3.channels %d,mp3.sampleRate %d, frameCount:%llu\n", mp3.channels, mp3.sampleRate, frameCount);
if (mp3.sampleRate != COMMON_SAMPLE_RATE) {
std::vector<float> resampledData;
if (!resample(pSampleData, mp3.sampleRate, frameCount, resampledData, COMMON_SAMPLE_RATE)) {
fprintf(stderr, "error: failed to resample MP3 data\n");
delete[] pSampleData; // Releasing reallocated memory
return false;
}
pcmf32.swap(resampledData); // Use of transformed data
} else {
pcmf32.assign(pSampleData, pSampleData + frameCount);
}
//release
if (isAllocated) {
delete[] pSampleData; // If memory is reallocated, use the delete[]
} else {
drmp3_free(pSampleData, nullptr); // otherwise, use the drmp3_free
}
return true;
}
void high_pass_filter(std::vector<float> &data, float cutoff, float sample_rate) {
const float rc = 1.0f / (2.0f * M_PI * cutoff);
const float dt = 1.0f / sample_rate;
const float alpha = dt / (rc + dt);
float y = data[0];
for (size_t i = 1; i < data.size(); i++) {
y = alpha * (y + data[i] - data[i - 1]);
data[i] = y;
}
}
bool
vad_simple(std::vector<float> &pcmf32, int sample_rate, int last_ms,
float vad_thold, float freq_thold, bool verbose) {
const int n_samples = pcmf32.size();
const int n_samples_last = (sample_rate * last_ms) / 1000;
if (n_samples_last >= n_samples) {
// not enough samples - assume no speech
return false;
}
if (freq_thold > 0.0f) {
high_pass_filter(pcmf32, freq_thold, sample_rate);
}
float energy_all = 0.0f;
float energy_last = 0.0f;
for (int i = 0; i < n_samples; i++) {
energy_all += fabsf(pcmf32[i]);
if (i >= n_samples - n_samples_last) {
energy_last += fabsf(pcmf32[i]);
}
}
energy_all /= n_samples;
energy_last /= n_samples_last;
if (verbose) {
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all,
energy_last, vad_thold, freq_thold);
}
if (energy_last > vad_thold * energy_all) {
return false;
}
return true;
}
float similarity(const std::string &s0, const std::string &s1) {
const size_t len0 = s0.size() + 1;
const size_t len1 = s1.size() + 1;
std::vector<int> col(len1, 0);
std::vector<int> prevCol(len1, 0);
for (size_t i = 0; i < len1; i++) {
prevCol[i] = i;
}
for (size_t i = 0; i < len0; i++) {
col[0] = i;
for (size_t j = 1; j < len1; j++) {
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]),
prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1));
}
col.swap(prevCol);
}
const float dist = prevCol[len1 - 1];
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}
bool sam_params_parse(int argc, char **argv, sam_params &params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-i" || arg == "--inp") {
params.fname_inp = argv[++i];
} else if (arg == "-o" || arg == "--out") {
params.fname_out = argv[++i];
} else if (arg == "-h" || arg == "--help") {
sam_print_usage(argc, argv, params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
sam_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void sam_print_usage(int /*argc*/, char **argv, const sam_params &params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n",
params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -i FNAME, --inp FNAME\n");
fprintf(stderr, " input file (default: %s)\n", params.fname_inp.c_str());
fprintf(stderr, " -o FNAME, --out FNAME\n");
fprintf(stderr, " output file (default: %s)\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
HTML
1
https://gitee.com/ppnt/whisper-cpp-server.git
git@gitee.com:ppnt/whisper-cpp-server.git
ppnt
whisper-cpp-server
whisper-cpp-server
main

搜索帮助