代码拉取完成,页面将自动刷新
import argparse
import logging
import time
import glob
import ast
import os
import dill
import common
import cv2
import numpy as np
from estimator import TfPoseEstimator
from networks import get_graph_path, model_wh
from lifting.prob_model import Prob3dPose
from lifting.draw import plot_pose
logger = logging.getLogger('TfPoseEstimator')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='tf-pose-estimation run by folder')
parser.add_argument('--folder', type=str, default='./images/')
parser.add_argument('--resolution', type=str, default='432x368', help='network input resolution. default=432x368')
parser.add_argument('--model', type=str, default='cmu', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small')
parser.add_argument('--scales', type=str, default='[None]', help='for multiple scales, eg. [1.0, (1.1, 0.05)]')
args = parser.parse_args()
scales = ast.literal_eval(args.scales)
w, h = model_wh(args.resolution)
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
files_grabbed = glob.glob(os.path.join(args.folder, '*.jpg'))
all_humans = dict()
for i, file in enumerate(files_grabbed):
# estimate human poses from a single image !
image = common.read_imgfile(file, None, None)
t = time.time()
humans = e.inference(image, scales=scales)
elapsed = time.time() - t
logger.info('inference image #%d: %s in %.4f seconds.' % (i, file, elapsed))
image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False)
cv2.imshow('tf-pose-estimation result', image)
cv2.waitKey(5)
all_humans[file.replace(args.folder, '')] = humans
with open(os.path.join(args.folder, 'pose.dil'), 'wb') as f:
dill.dump(all_humans, f, protocol=dill.HIGHEST_PROTOCOL)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。