代码拉取完成,页面将自动刷新
package factors
import (
"context"
"gitee.com/quant1x/engine/cache"
"gitee.com/quant1x/engine/datasource/base"
"gitee.com/quant1x/engine/utils"
"gitee.com/quant1x/exchange"
"gitee.com/quant1x/num"
"gitee.com/quant1x/pandas"
. "gitee.com/quant1x/pandas/formula"
)
const (
cacheL5KeyInvestmentSentimentMaster = "ism"
S8PeriodOfLimitUp = 30
)
// InvestmentSentimentMaster 情绪大师
type InvestmentSentimentMaster struct {
cache.DataSummary `dataframe:"-"`
Date string `name:"日期" dataframe:"日期"` // 数据日期
Code string `name:"证券代码" dataframe:"证券代码"` // 证券代码
PN int `name:"观察周期" dataframe:"pn"`
ZDF float64 `name:"涨跌幅" dataframe:"zdf"`
R1CLOSE float64 `name:"昨收盘" dataframe:"r1Close"`
ZTJ float64 `name:"涨停价" dataframe:"ztj"`
CZT bool `name:"涨停" dataframe:"czt"`
BN int `name:"板数" dataframe:"bn"`
FZT int `name:"距离首次涨停" dataframe:"fzt"`
TN int `name:"天数" dataframe:"tn"`
TIAN int `name:"天" dataframe:"tian"`
BAN int `name:"板" dataframe:"ban"`
ZHANG int `name:"涨" dataframe:"zhang"`
PING int `name:"平" dataframe:"ping"`
DIE int `name:"跌" dataframe:"die"`
OH float64 `name:"周期内最高价" dataframe:"oh"`
COH bool `name:"是否周期内最高价" dataframe:"coh"`
OHN int `name:"最高价周期" dataframe:"ohn"`
OL float64 `name:"周期内最低价" dataframe:"ol"`
COL bool `name:"是否周期内最低价" dataframe:"col"`
OLN int `name:"最低价周期" dataframe:"oln"`
OHV float64 `name:"最高价量" dataframe:"ohv"`
OHBL float64 `name:"最高价量比" dataframe:"ohbl"`
OLV float64 `name:"最低价量" dataframe:"olv"`
OLBL float64 `name:"最低价量比" dataframe:"olbl"`
UpdateTime string `name:"更新时间" dataframe:"update_time"` // 更新时间
State uint64 `name:"样本状态" dataframe:"样本状态"` // 样本状态
}
func NewInvestmentSentimentMaster(date, code string) *InvestmentSentimentMaster {
summary := __mapFeatures[FeatureInvestmentSentimentMaster]
v := InvestmentSentimentMaster{
DataSummary: summary,
Date: date,
Code: code,
}
return &v
}
func (this *InvestmentSentimentMaster) Factory(date string, code string) Feature {
v := NewInvestmentSentimentMaster(date, code)
return v
}
func (this *InvestmentSentimentMaster) GetDate() string {
return this.Date
}
func (this *InvestmentSentimentMaster) GetSecurityCode() string {
return this.Code
}
func (this *InvestmentSentimentMaster) Init(ctx context.Context, date string) error {
_ = ctx
_ = date
return nil
}
func (this *InvestmentSentimentMaster) Update(code, cacheDate, featureDate string, whole bool) {
securityCode := exchange.CorrectSecurityCode(code)
this.Date = exchange.FixTradeDate(cacheDate)
this.Code = securityCode
tradeDate := exchange.FixTradeDate(featureDate)
klines := base.CheckoutKLines(securityCode, tradeDate)
if len(klines) < cache.KLineMin {
return
}
df := pandas.LoadStructs(klines)
var (
DATE = df.Col("date")
OPEN = df.ColAsNDArray("open")
CLOSE = df.ColAsNDArray("close")
HIGH = df.ColAsNDArray("high")
LOW = df.ColAsNDArray("low")
VOL = df.ColAsNDArray("volume")
)
//PN:30,COLORWHITE,NODRAW;
PN := S8PeriodOfLimitUp
//R1CLOSE:=REF(CLOSE,1);
R1CLOSE := REF(CLOSE, 1)
//CST:=NOT(NAMELIKE('S') OR NAMELIKE('*S')) AND VOL>1;
//ZDF:=IFF(INBLOCK('创业板'), 0.2, IFF(INBLOCK('科创板'),0.2, IFF(INBLOCK('ST板块'), 0.05, IFF(INBLOCK('北证A股'),0.3,0.1))));
ZDF := exchange.MarketLimit(securityCode)
//ZTJ:=ZTPRICE(R1CLOSE,ZDF);
ZTJ := R1CLOSE.Mul(1.00+ZDF).Apply2(func(idx int, v any) any {
f := v.(float64)
return num.Decimal(f)
}, true)
//CZT:=CLOSE=ZTJ;
CZT := CLOSE.Gte(ZTJ)
//BN:COUNT(CZT,PN);
BN := COUNT(CZT, PN)
//FTZ:=BARSSINCEN(CZT,PN);
FTZ := BARSSINCEN(CZT, PN)
//TN:FTZ+1,COLORWHITE,NODRAW;
TN := FTZ.Add(1)
//天:TN,COLORYELLOW,NODRAW;
TIAN := TN
//板:BN,COLORRED,NODRAW;
BAN := BN
//CUP:=CLOSE>R1CLOSE;
CUP := CLOSE.Gt(R1CLOSE)
//CPING:=CLOSE=R1CLOSE;
CPING := CLOSE.Eq(R1CLOSE)
//CDOWN:=CLOSE<R1CLOSE;
CDOWN := CLOSE.Lt(R1CLOSE)
//涨:COUNT(CUP,TN),COLORRED,NODRAW;
ZHANG := COUNT(CUP, TN)
//平:COUNT(CPING,TN),COLORWHITE,NODRAW;
PING := COUNT(CPING, TN)
//跌:COUNT(CDOWN,TN),COLORGREEN,NODRAW;
DIE := COUNT(CDOWN, TN)
//{首板以来的最高价}
//OH:HHV(HIGH,TN),COLORRED,DOTLINE;
OH := HHV(HIGH, TN)
//{首板以来最高价到现在的周期}
//OHN:BARSLAST(HIGH=OH),COLORYELLOW,NODRAW;
COH := HIGH.Eq(OH)
OHN := BARSLAST(COH)
//{首板以来的最低价}
//OL:LLV(LOW,TN),COLORGREEN,DOTLINE;
OL := LLV(LOW, TN)
//{首板以来最低价到现在的周期}
//OLN:BARSLAST(LOW=OL),COLORYELLOW,NODRAW;
COL := LOW.Eq(OL)
OLN := BARSLAST(COL)
//{首板以来最高价当日的成交量}
//OHV:REF(VOL,OHN),COLORWHITE,NODRAW;
OHV := REF(VOL, OHN)
//{今天成交量和最高价当日成交量的比值}
//OHBL:VOL/OHV,COLORWHITE,NODRAW;
OHBL := VOL.Div(OHV)
//{首板以来最低价当日的成交量}
//OLV:REF(VOL,OLN),COLORWHITE,NODRAW;
OLV := REF(VOL, OLN)
//{今天成交量和最低价当日成交量的比值}
//OLBL:VOL/OLV,COLORWHITE,NODRAW;
OLBL := VOL.Div(OLV)
{
// 特征数据采集
this.PN = PN
this.ZDF = ZDF
this.R1CLOSE = utils.Float64IndexOf(CLOSE, -1)
this.ZTJ = utils.Float64IndexOf(ZTJ, -1)
this.CZT = utils.BoolIndexOf(CZT, -1)
this.BN = utils.IntegerIndexOf(BN, -1)
this.FZT = utils.IntegerIndexOf(FTZ, -1)
this.TN = utils.IntegerIndexOf(TN, -1)
this.TIAN = utils.IntegerIndexOf(TIAN, -1)
this.BAN = utils.IntegerIndexOf(BAN, -1)
this.ZHANG = utils.IntegerIndexOf(ZHANG, -1)
this.PING = utils.IntegerIndexOf(PING, -1)
this.DIE = utils.IntegerIndexOf(DIE, -1)
this.OH = utils.Float64IndexOf(OH, -1)
this.COH = utils.BoolIndexOf(COH, -1)
this.OHN = utils.IntegerIndexOf(OHN, -1)
this.OL = utils.Float64IndexOf(OL, -1)
this.COL = utils.BoolIndexOf(COL, -1)
this.OLN = utils.IntegerIndexOf(OLN, -1)
this.OHV = utils.Float64IndexOf(OHV, -1)
this.OHBL = utils.Float64IndexOf(OHBL, -1)
this.OLV = utils.Float64IndexOf(OLV, -1)
this.OLBL = utils.Float64IndexOf(OLBL, -1)
}
//{
// // 调试
// df = pandas.NewDataFrame(DATE, CLOSE, ZTJ, CZT, BN, FTZ, TN)
// fmt.Println(df)
//}
this.UpdateTime = GetTimestamp()
this.State |= this.Kind()
_ = DATE
_ = OPEN
}
func (this *InvestmentSentimentMaster) Repair(securityCode, cacheDate, featureDate string, whole bool) {
this.Update(securityCode, cacheDate, featureDate, whole)
}
func (this *InvestmentSentimentMaster) FromHistory(history History) Feature {
_ = history
return this
}
func (this *InvestmentSentimentMaster) Increase(snapshot QuoteSnapshot) Feature {
_ = snapshot
return this
}
func (this *InvestmentSentimentMaster) ValidateSample() error {
if this.State > 0 {
return nil
}
return ErrInvalidFeatureSample
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。