代码拉取完成,页面将自动刷新
package math32
func Exp(x float32) float32
func exp(x float32) float32 {
const (
Ln2Hi = float32(6.9313812256e-01)
Ln2Lo = float32(9.0580006145e-06)
Log2e = float32(1.4426950216e+00)
Overflow = 7.09782712893383973096e+02
Underflow = -7.45133219101941108420e+02
NearZero = 1.0 / (1 << 28) // 2**-28
LogMax = 0x42b2d4fc // The bitmask of log(FLT_MAX), rounded down. This value is the largest input that can be passed to exp() without producing overflow.
LogMin = 0x42aeac50 // The bitmask of |log(REAL_FLT_MIN)|, rounding down
)
// hx := Float32bits(x) & uint32(0x7fffffff)
// special cases
switch {
case IsNaN(x) || IsInf(x, 1):
return x
case IsInf(x, -1):
return 0
case x > Overflow:
return Inf(1)
case x < Underflow:
return 0
// case hx > LogMax:
// return Inf(1)
// case x < 0 && hx > LogMin:
return 0
case -NearZero < x && x < NearZero:
return 1 + x
}
// reduce; computed as r = hi - lo for extra precision.
var k int
switch {
case x < 0:
k = int(Log2e*x - 0.5)
case x > 0:
k = int(Log2e*x + 0.5)
}
hi := x - float32(k)*Ln2Hi
lo := float32(k) * Ln2Lo
// compute
return expmulti(hi, lo, k)
}
// Exp2 returns 2**x, the base-2 exponential of x.
//
// Special cases are the same as Exp.
func Exp2(x float32) float32
func exp2(x float32) float32 {
const (
Ln2Hi = 6.9313812256e-01
Ln2Lo = 9.0580006145e-06
Overflow = 1.0239999999999999e+03
Underflow = -1.0740e+03
)
// special cases
switch {
case IsNaN(x) || IsInf(x, 1):
return x
case IsInf(x, -1):
return 0
case x > Overflow:
return Inf(1)
case x < Underflow:
return 0
}
// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
// computed as r = hi - lo for extra precision.
var k int
switch {
case x > 0:
k = int(x + 0.5)
case x < 0:
k = int(x - 0.5)
}
t := x - float32(k)
hi := t * Ln2Hi
lo := -t * Ln2Lo
// compute
return expmulti(hi, lo, k)
}
// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
func expmulti(hi, lo float32, k int) float32 {
const (
P1 = float32(1.6666667163e-01) /* 0x3e2aaaab */
P2 = float32(-2.7777778450e-03) /* 0xbb360b61 */
P3 = float32(6.6137559770e-05) /* 0x388ab355 */
P4 = float32(-1.6533901999e-06) /* 0xb5ddea0e */
P5 = float32(4.1381369442e-08) /* 0x3331bb4c */
)
r := hi - lo
t := r * r
c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
y := 1 - ((lo - (r*c)/(2-c)) - hi)
// TODO(rsc): make sure Ldexp can handle boundary k
return Ldexp(y, k)
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。