代码拉取完成,页面将自动刷新
package stat
import (
"gitee.com/quant1x/gox/num"
"math"
)
// PolyFit
//
// Least squares polynomial fit.
//
// .. note::
// This forms part of the old polynomial API. Since version 1.4, the
// new polynomial API defined in `numpy.polynomial` is preferred.
// A summary of the differences can be found in the
// :doc:`transition guide </reference/routines.polynomials>`.
//
// Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg`
// to points `(x, y)`. Returns a vector of coefficients `p` that minimises
// the squared error in the order `deg`, `deg-1`, ... `0`.
//
// The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class
// method is recommended for new code as it is more stable numerically. See
// the documentation of the method for more information.
//
// Parameters
// ----------
// x : array_like, shape (M,)
// x-coordinates of the M sample points ``(x[i], y[i])``.
// y : array_like, shape (M,) or (M, K)
// y-coordinates of the sample points. Several data sets of sample
// points sharing the same x-coordinates can be fitted at once by
// passing in a 2D-array that contains one dataset per column.
// deg : int
// Degree of the fitting polynomial
//
// Returns
// -------
// p : ndarray, shape (deg + 1,) or (deg + 1, K)
// Polynomial coefficients, highest power first. If `y` was 2-D, the
// coefficients for `k`-th data set are in ``p[:,k]``.
//
// residuals, rank, singular_values, rcond
// These values are only returned if ``full == True``
//
// - residuals -- sum of squared residuals of the least squares fit
// - rank -- the effective rank of the scaled Vandermonde
// coefficient matrix
// - singular_values -- singular values of the scaled Vandermonde
// coefficient matrix
// - rcond -- value of `rcond`.
//
// For more details, see `numpy.linalg.lstsq`.
//
// Warns
// -----
// RankWarning
// The rank of the coefficient matrix in the least-squares fit is
// deficient. The warning is only raised if ``full == False``.
//
// The warnings can be turned off by
//
// >>> import warnings
// >>> warnings.simplefilter('ignore', np.RankWarning)
//
// See Also
// --------
// polyval : Compute polynomial values.
// linalg.lstsq : Computes a least-squares fit.
// scipy.interpolate.UnivariateSpline : Computes spline fits.
//
// Notes
// -----
// The solution minimizes the squared error
//
// .. math::
// E = \\sum_{j=0}^k |p(x_j) - y_j|^2
//
// in the equations::
//
// x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
// x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
// ...
// x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]
//
// The coefficient matrix of the coefficients `p` is a Vandermonde matrix.
//
// `polyfit` issues a `RankWarning` when the least-squares fit is badly
// conditioned. This implies that the best fit is not well-defined due
// to numerical error. The results may be improved by lowering the polynomial
// degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter
// can also be set to a value smaller than its default, but the resulting
// fit may be spurious: including contributions from the small singular
// values can add numerical noise to the result.
//
// Note that fitting polynomial coefficients is inherently badly conditioned
// when the degree of the polynomial is large or the interval of sample points
// is badly centered. The quality of the fit should always be checked in these
// cases. When polynomial fits are not satisfactory, splines may be a good
// alternative.
//
// References
// ----------
// .. [1] Wikipedia, "Curve fitting",
// https://en.wikipedia.org/wiki/Curve_fitting
// .. [2] Wikipedia, "Polynomial interpolation",
// https://en.wikipedia.org/wiki/Polynomial_interpolation
// .. [3] numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
// https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
//
// Examples
// --------
// >>> import warnings
// >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
// >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
// >>> z = np.polyfit(x, y, 3)
// >>> z
// array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary
func PolyFit(x, y []DType, deg int, args ...any) []DType {
// 默认从右向左
var __increasing = false
if len(args) > 0 {
// 第一个参数为是否copy
if arg0, ok := args[0].(bool); ok {
__increasing = arg0
}
}
// Initialize matrix to store powers of x
var X = make([][]float64, len(x))
for i := range X {
X[i] = make([]float64, deg+1)
}
// Fill matrix with powers of x
for i := 0; i < len(x); i++ {
for j := 0; j <= deg; j++ {
k := j
if !__increasing {
k = deg - k
}
X[i][j] = math.Pow(x[i], float64(k))
}
}
// Calculate transpose of X
var XT = __transpose(X)
// Multiply XT with X
var XTX = __matmul(XT, X)
// Invert XTX
var XTXinv = __inv(XTX)
// Multiply XTXinv with XT
var XTXinvXT = __matmul(XTXinv, XT)
// Multiply result with y
var coef = __matvec(XTXinvXT, y)
return coef
}
// PolyVal
//
// Evaluate a polynomial at specific values.
//
// .. note::
// This forms part of the old polynomial API. Since version 1.4, the
// new polynomial API defined in `numpy.polynomial` is preferred.
// A summary of the differences can be found in the
// :doc:`transition guide </reference/routines.polynomials>`.
//
// If `p` is of length N, this function returns the value:
//
// ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]``
//
// If `x` is a sequence, then ``p(x)`` is returned for each element of ``x``.
// If `x` is another polynomial then the composite polynomial ``p(x(t))``
// is returned.
//
// Parameters
//
// ----------
//
// p : array_like or poly1d object
// 1D array of polynomial coefficients (including coefficients equal
// to zero) from highest degree to the constant term, or an
// instance of poly1d.
// x : array_like or poly1d object
// A number, an array of numbers, or an instance of poly1d, at
// which to evaluate `p`.
//
// Returns
//
// -------
//
// values : ndarray or poly1d
// If `x` is a poly1d instance, the result is the composition of the two
// polynomials, i.e., `x` is "substituted" in `p` and the simplified
// result is returned. In addition, the type of `x` - array_like or
// poly1d - governs the type of the output: `x` array_like => `values`
// array_like, `x` a poly1d object => `values` is also.
//
// See Also
// --------
// poly1d: A polynomial class.
//
// Notes
// -----
// Horner's scheme [1]_ is used to evaluate the polynomial. Even so,
// for polynomials of high degree the values may be inaccurate due to
// rounding errors. Use carefully.
//
// If `x` is a subtype of `ndarray` the return value will be of the same type.
//
// References
// ----------
// .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng.
// trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand
// Reinhold Co., 1985, pg. 720.
//
// Examples
// --------
// >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
// 76
// >>> np.polyval([3,0,1], np.poly1d(5))
// poly1d([76])
// >>> np.polyval(np.poly1d([3,0,1]), 5)
// 76
// >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
// poly1d([76])
func PolyVal(p, x []DType) []DType {
//p = NX.asarray(p)
//if isinstance(x, poly1d):
// y = 0
//else:
// x = NX.asanyarray(x)
// y = NX.zeros_like(x)
//for pv in p:
//y = y * x + pv
y := Repeat(DType(0), len(x))
for _, v := range p {
num.Mul_Inplace(y, x)
num.AddNumber_Inplace(y, v)
}
return y
}
// Function to calculate matrix transpose
func __transpose(a [][]float64) [][]float64 {
var transposed = make([][]float64, len(a[0]))
for i := range transposed {
transposed[i] = make([]float64, len(a))
}
for i := 0; i < len(a); i++ {
for j := 0; j < len(a[0]); j++ {
transposed[j][i] = a[i][j]
}
}
return transposed
}
// Function to multiply two matrices
func __matmul(a, b [][]float64) [][]float64 {
var result = make([][]float64, len(a))
for i := range result {
result[i] = make([]float64, len(b[0]))
}
for i := 0; i < len(a); i++ {
for j := 0; j < len(b[0]); j++ {
for k := 0; k < len(b); k++ {
result[i][j] += a[i][k] * b[k][j]
}
}
}
return result
}
// Function to multiply a matrix with a vector
func __matvec(a [][]float64, b []float64) []float64 {
var result = make([]float64, len(a))
for i := 0; i < len(a); i++ {
for j := 0; j < len(b); j++ {
result[i] += a[i][j] * b[j]
}
}
return result
}
func __inv(a [][]float64) [][]float64 {
var n = len(a)
// Create augmented matrix
var augmented = make([][]float64, n)
for i := range augmented {
augmented[i] = make([]float64, 2*n)
for j := 0; j < n; j++ {
augmented[i][j] = a[i][j]
}
}
for i := 0; i < n; i++ {
augmented[i][i+n] = 1
}
// Perform Gaussian elimination
for i := 0; i < n; i++ {
var pivot = augmented[i][i]
for j := i + 1; j < n; j++ {
var factor = augmented[j][i] / pivot
for k := i; k < 2*n; k++ {
augmented[j][k] -= factor * augmented[i][k]
}
}
}
// Perform back-substitution
for i := n - 1; i >= 0; i-- {
var pivot = augmented[i][i]
for j := i - 1; j >= 0; j-- {
var factor = augmented[j][i] / pivot
for k := i; k < 2*n; k++ {
augmented[j][k] -= factor * augmented[i][k]
}
}
}
// Normalize rows
for i := 0; i < n; i++ {
var pivot = augmented[i][i]
for j := 0; j < 2*n; j++ {
augmented[i][j] /= pivot
}
}
// Extract inverse from augmented matrix
var inverse = make([][]float64, n)
for i := range inverse {
inverse[i] = make([]float64, n)
}
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
inverse[i][j] = augmented[i][j+n]
}
}
return inverse
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。