一、漏洞信息
漏洞编号:CVE-2024-46734
漏洞归属组件:kernel
漏洞归属的版本:4.19.140,4.19.194,4.19.90,5.10.0,6.1.0,6.1.14,6.1.19,6.1.5,6.1.6,6.1.8,6.4.0,6.6.0
CVSS V2.0分值:
BaseScore:0.0 None
Vector:CVSS:2.0/
漏洞简述:
In the Linux kernel, the following vulnerability has been resolved:btrfs: fix race between direct IO write and fsync when using same fdIf we have 2 threads that are using the same file descriptor and one ofthem is doing direct IO writes while the other is doing fsync, we have arace where we can end up either:1) Attempt a fsync without holding the inode s lock, triggering an assertion failures when assertions are enabled;2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed.The race happens like this:1) A user space program opens a file descriptor with O_DIRECT;2) The program spawns 2 threads using libpthread for example;3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor.4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs;5) Task A does a direct IO write, and at btrfs_direct_write() sets the file s private to an on stack allocated private with the member fsync_skip_inode_lock set to true;6) Task B enters btrfs_sync_file() and sees that there s a private structure associated to the file which has fsync_skip_inode_lock set to true, so it skips locking the inode s VFS lock;7) Task A completes the direct IO write, and resets the file s private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode s VFS lock;8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode s VFS lock is held fails, since task B never locked it and task A has already unlocked it.The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mod---truncated---
漏洞公开时间:2024-09-18 16:15:02
漏洞创建时间:2024-09-19 02:25:09
漏洞详情参考链接:
https://nvd.nist.gov/vuln/detail/CVE-2024-46734
漏洞分析指导链接:
https://gitee.com/openeuler/cve-manager/blob/master/cve-vulner-manager/doc/md/manual.md
漏洞数据来源:
openBrain开源漏洞感知系统
漏洞补丁信息:
无
二、漏洞分析结构反馈
影响性分析说明:
In the Linux kernel, the following vulnerability has been resolved:btrfs: fix race between direct IO write and fsync when using same fdIf we have 2 threads that are using the same file descriptor and one ofthem is doing direct IO writes while the other is doing fsync, we have arace where we can end up either:1) Attempt a fsync without holding the inode's lock, triggering an assertion failures when assertions are enabled;2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed.The race happens like this:1) A user space program opens a file descriptor with O_DIRECT;2) The program spawns 2 threads using libpthread for example;3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor.4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs;5) Task A does a direct IO write, and at btrfs_direct_write() sets the file's private to an on stack allocated private with the member 'fsync_skip_inode_lock' set to true;6) Task B enters btrfs_sync_file() and sees that there's a private structure associated to the file which has 'fsync_skip_inode_lock' set to true, so it skips locking the inode's VFS lock;7) Task A completes the direct IO write, and resets the file's private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode's VFS lock;8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode's VFS lock is held fails, since task B never locked it and task A has already unlocked it.The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: <TASK> ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160
openEuler评分:
5.5
Vector:CVSS:2.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
受影响版本排查(受影响/不受影响):
1.openEuler-24.03-LTS(6.6.0):受影响
2.openEuler-20.03-LTS-SP4(4.19.90):不受影响
3.openEuler-22.03-LTS-SP1(5.10.0):不受影响
4.openEuler-22.03-LTS-SP3(5.10.0):不受影响
5.openEuler-22.03-LTS-SP4(5.10.0):不受影响
6.master(6.6.0):不受影响
7.openEuler-24.03-LTS-Next(6.6.0):不受影响
修复是否涉及abi变化(是/否):
1.openEuler-20.03-LTS-SP4(4.19.90):否
2.openEuler-22.03-LTS-SP1(5.10.0):否
3.openEuler-22.03-LTS-SP3(5.10.0):否
4.master(6.6.0):否
5.openEuler-24.03-LTS(6.6.0):否
6.openEuler-24.03-LTS-Next(6.6.0):否
7.openEuler-22.03-LTS-SP4(5.10.0):否
三、漏洞修复
安全公告链接:https://www.openeuler.org/zh/security/safety-bulletin/detail/?id=openEuler-SA-2024-2219
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。
@yangyingliang ,@jiaoff ,@guohaocs2c ,@hanjun-guo ,@woqidaideshi ,@newbeats ,@zhangyi089 ,@colyli ,@thundertown ,@htforge ,@chiqijun ,@lengchao ,@zhujianwei001 ,@kylin-mayukun ,@wangxiongfeng ,@wkfxxx ,@SuperSix173 ,@jentlestea ,@oskernel0719 ,@gasonchen
issue处理注意事项:
1. 当前issue受影响的分支提交pr时, 须在pr描述中填写当前issue编号进行关联, 否则无法关闭当前issue;
2. 模板内容需要填写完整, 无论是受影响或者不受影响都需要填写完整内容,未引入的分支不需要填写, 否则无法关闭当前issue;
3. 以下为模板中需要填写完整的内容, 请复制到评论区回复, 注: 内容的标题名称(影响性分析说明, openEuler评分, 受影响版本排查(受影响/不受影响), 修复是否涉及abi变化(是/否))不能省略,省略后cve-manager将无法正常解析填写内容.
影响性分析说明:
openEuler评分: (评分和向量)
受影响版本排查(受影响/不受影响):
1.master(6.6.0):
2.openEuler-20.03-LTS-SP4(4.19.90):
3.openEuler-22.03-LTS-SP1(5.10.0):
4.openEuler-22.03-LTS-SP3(5.10.0):
5.openEuler-22.03-LTS-SP4(5.10.0):
6.openEuler-24.03-LTS(6.6.0):
7.openEuler-24.03-LTS-Next(6.6.0):
修复是否涉及abi变化(是/否):
1.master(6.6.0):
2.openEuler-20.03-LTS-SP4(4.19.90):
3.openEuler-22.03-LTS-SP1(5.10.0):
4.openEuler-22.03-LTS-SP3(5.10.0):
5.openEuler-22.03-LTS-SP4(5.10.0):
6.openEuler-24.03-LTS(6.6.0):
7.openEuler-24.03-LTS-Next(6.6.0):
issue处理具体操作请参考:
https://gitee.com/openeuler/cve-manager/blob/master/cve-vulner-manager/doc/md/manual.md
pr关联issue具体操作请参考:
https://gitee.com/help/articles/4142
说明:补丁链接仅供初步排查参考,实际可用性请人工再次确认,补丁下载验证可使用CVE补丁工具。
若补丁不准确,烦请在此issue下评论 '/report-patch 参考网址 补丁链接1,补丁链接2' 反馈正确信息,便于我们不断优化工具,不胜感激。
如 /report-patch https://security-tracker.debian.org/tracker/CVE-2021-3997 https://github.com/systemd/systemd/commit/5b1cf7a9be37e20133c0208005274ce4a5b5c6a1
CVE-2024-46734
影响性分析说明:
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between direct IO write and fsync when using same fd
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
A user space program opens a file descriptor with O_DIRECT;
The program spawns 2 threads using libpthread for example;
One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Another problem here is if task B grabs the private pointer and then uses
it after task A has finished, since the private was allocated in the stack
of task A, it results in some invalid memory access with a hard to predict
result.
This issue, triggering the assertion, was observed with QEMU workloads by
two users in the Link tags below.
Fix this by not relying on a file's private to pass information to fsync
that it should skip locking the inode and instead pass this information
through a special value stored in current->journal_info. This is safe
because in the relevant section of the direct IO write path we are not
holding a transaction handle, so current->journal_info is NULL.
The following C program triggers the issue:
$ cat repro.c
/* Get the O_DIRECT definition. */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
static int fd;
static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset)
{
while (count > 0) {
ssize_t ret;
ret = pwrite(fd, buf, count, offset);
if (ret < 0) {
if (errno == EINTR)
continue;
return ret;
}
count -= ret;
buf += ret;
}
return 0;
}
static void *fsync_loop(void *arg)
{
while (1) {
int ret;
ret = fsync(fd);
if (ret != 0) {
perror("Fsync failed");
exit(6);
}
}
}
int main(int argc, char *argv[])
{
long pagesize;
void *write_buf;
pthread_t fsyncer;
int ret;
if (argc != 2) {
fprintf(stderr, "Use: %s <file path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666);
if (fd == -1) {
perror("Failed to open/create file");
return 1;
}
pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1) {
perror("Failed to get page size");
return 2;
}
ret = posix_memalign(&write_buf, pagesize, pagesize);
if (ret) {
perror("Failed to allocate buffer");
return 3;
}
ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to create writer thread: %d\n", ret);
return 4;
}
while (1) {
ret = do_write(fd, write_buf, pagesize, 0);
if (ret != 0) {
perror("Write failed");
exit(5);
}
}
return 0;
}
mkfs.btrfs−f/dev/sdi mount /dev/sdi /mnt/sdi
$ timeout 10 ./repro /mnt/sdi/foo
Usually the race is triggered within less than 1 second. A test case for
fstests will follow soon.
The Linux kernel CVE team has assigned CVE-2024-46734 to this issue.
openEuler评分:(评分和向量)
3.9
AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L
受影响版本排查(受影响/不受影响):
1.openEuler-20.03-LTS-SP4:不受影响
2.openEuler-22.03-LTS-SP1:不受影响
3.openEuler-22.03-LTS-SP3:不受影响
4.openEuler-22.03-LTS-SP4:不受影响
5.master(6.1.0):不受影响
6.openEuler-24.03-LTS:不受影响
7.openEuler-24.03-LTS-Next:不受影响
修复是否涉及abi变化(是/否):
1.openEuler-20.03-LTS-SP4:否
2.openEuler-22.03-LTS-SP1:否
3.openEuler-22.03-LTS-SP3:否
4.master(6.1.0):否
5.openEuler-24.03-LTS:否
6.openEuler-24.03-LTS-Next:否
7.openEuler-22.03-LTS-SP4:否
@ 经过 cve-manager 解析, 已分析的内容如下表所示:
状态 | 需分析 | 内容 |
---|---|---|
已分析 | 1.影响性分析说明 | In the Linux kernel, the following vulnerability has been resolved:btrfs: fix race between direct IO write and fsync when using same fdIf we have 2 threads that are using the same file descriptor and one ofthem is doing direct IO writes while the other is doing fsync, we have arace where we can end up either:1) Attempt a fsync without holding the inode's lock, triggering an assertion failures when assertions are enabled;2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed.The race happens like this:1) A user space program opens a file descriptor with O_DIRECT;2) The program spawns 2 threads using libpthread for example;3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor.4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs;5) Task A does a direct IO write, and at btrfs_direct_write() sets the file's private to an on stack allocated private with the member 'fsync_skip_inode_lock' set to true;6) Task B enters btrfs_sync_file() and sees that there's a private structure associated to the file which has 'fsync_skip_inode_lock' set to true, so it skips locking the inode's VFS lock;7) Task A completes the direct IO write, and resets the file's private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode's VFS lock;8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode's VFS lock is held fails, since task B never locked it and task A has already unlocked it.The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: <TASK> ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7eAnother problem here is if task B grabs the private pointer and then usesit after task A has finished, since the private was allocated in the stackof task A, it results in some invalid memory access with a hard to predictresult.This issue, triggering the assertion, was observed with QEMU workloads bytwo users in the Link tags below.Fix this by not relying on a file's private to pass information to fsyncthat it should skip locking the inode and instead pass this informationthrough a special value stored in current->journal_info. This is safebecause in the relevant section of the direct IO write path we are notholding a transaction handle, so current->journal_info is NULL.The following C program triggers the issue: $ cat repro.c /* Get the O_DIRECT definition. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stdint.h> #include <fcntl.h> #include <errno.h> #include <string.h> #include <pthread.h> static int fd; static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset) { while (count > 0) { ssize_t ret; ret = pwrite(fd, buf, count, offset); if (ret < 0) { if (errno == EINTR) continue; return ret; } count -= ret; buf += ret; } return 0; } static void *fsync_loop(void *arg) { while (1) { int ret; ret = fsync(fd); if (ret != 0) { perror("Fsync failed"); exit(6); } } } int main(int argc, char *argv[]) { long pagesize; void *write_buf; pthread_t fsyncer; int ret; if (argc != 2) { fprintf(stderr, "Use: %s <file path>\n", argv[0]); return 1; } fd = open(argv[1], O_WRONLY |
已分析 | 2.openEulerScore | 3.9 |
已分析 | 3.openEulerVector | AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L |
已分析 | 4.受影响版本排查 | openEuler-20.03-LTS-SP4:不受影响,openEuler-22.03-LTS-SP1:不受影响,openEuler-22.03-LTS-SP3:不受影响,openEuler-22.03-LTS-SP4:不受影响,master:不受影响,openEuler-24.03-LTS:不受影响,openEuler-24.03-LTS-Next:不受影响 |
已分析 | 5.修复是否涉及abi变化 | openEuler-20.03-LTS-SP4:否,openEuler-22.03-LTS-SP1:否,openEuler-22.03-LTS-SP3:否,master:否,openEuler-24.03-LTS:否,openEuler-24.03-LTS-Next:否,openEuler-22.03-LTS-SP4:否 |
请确认分析内容的准确性, 确认无误后, 您可以进行后续步骤, 否则您可以继续分析.
CVE-2024-46734
影响性分析说明:
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between direct IO write and fsync when using same fd
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
A user space program opens a file descriptor with O_DIRECT;
The program spawns 2 threads using libpthread for example;
One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Another problem here is if task B grabs the private pointer and then uses
it after task A has finished, since the private was allocated in the stack
of task A, it results in some invalid memory access with a hard to predict
result.
This issue, triggering the assertion, was observed with QEMU workloads by
two users in the Link tags below.
Fix this by not relying on a file's private to pass information to fsync
that it should skip locking the inode and instead pass this information
through a special value stored in current->journal_info. This is safe
because in the relevant section of the direct IO write path we are not
holding a transaction handle, so current->journal_info is NULL.
The following C program triggers the issue:
$ cat repro.c
/* Get the O_DIRECT definition. */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
static int fd;
static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset)
{
while (count > 0) {
ssize_t ret;
ret = pwrite(fd, buf, count, offset);
if (ret < 0) {
if (errno == EINTR)
continue;
return ret;
}
count -= ret;
buf += ret;
}
return 0;
}
static void *fsync_loop(void *arg)
{
while (1) {
int ret;
ret = fsync(fd);
if (ret != 0) {
perror("Fsync failed");
exit(6);
}
}
}
int main(int argc, char *argv[])
{
long pagesize;
void *write_buf;
pthread_t fsyncer;
int ret;
if (argc != 2) {
fprintf(stderr, "Use: %s <file path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666);
if (fd == -1) {
perror("Failed to open/create file");
return 1;
}
pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1) {
perror("Failed to get page size");
return 2;
}
ret = posix_memalign(&write_buf, pagesize, pagesize);
if (ret) {
perror("Failed to allocate buffer");
return 3;
}
ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to create writer thread: %d\n", ret);
return 4;
}
while (1) {
ret = do_write(fd, write_buf, pagesize, 0);
if (ret != 0) {
perror("Write failed");
exit(5);
}
}
return 0;
}
mkfs.btrfs−f/dev/sdi mount /dev/sdi /mnt/sdi
$ timeout 10 ./repro /mnt/sdi/foo
Usually the race is triggered within less than 1 second. A test case for
fstests will follow soon.
The Linux kernel CVE team has assigned CVE-2024-46734 to this issue.
openEuler评分:(评分和向量)
3.9
AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L
受影响版本排查(受影响/不受影响):
1.openEuler-20.03-LTS-SP4:不受影响
2.openEuler-22.03-LTS-SP1:不受影响
3.openEuler-22.03-LTS-SP3:不受影响
4.openEuler-22.03-LTS-SP4:不受影响
5.master(6.1.0):不受影响
6.openEuler-24.03-LTS:受影响
7.openEuler-24.03-LTS-Next:不受影响
修复是否涉及abi变化(是/否):
1.openEuler-20.03-LTS-SP4:否
2.openEuler-22.03-LTS-SP1:否
3.openEuler-22.03-LTS-SP3:否
4.master(6.1.0):否
5.openEuler-24.03-LTS:否
6.openEuler-24.03-LTS-Next:否
7.openEuler-22.03-LTS-SP4:否
@ 经过 cve-manager 解析, 已分析的内容如下表所示:
状态 | 需分析 | 内容 |
---|---|---|
已分析 | 1.影响性分析说明 | In the Linux kernel, the following vulnerability has been resolved:btrfs: fix race between direct IO write and fsync when using same fdIf we have 2 threads that are using the same file descriptor and one ofthem is doing direct IO writes while the other is doing fsync, we have arace where we can end up either:1) Attempt a fsync without holding the inode's lock, triggering an assertion failures when assertions are enabled;2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed.The race happens like this:1) A user space program opens a file descriptor with O_DIRECT;2) The program spawns 2 threads using libpthread for example;3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor.4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs;5) Task A does a direct IO write, and at btrfs_direct_write() sets the file's private to an on stack allocated private with the member 'fsync_skip_inode_lock' set to true;6) Task B enters btrfs_sync_file() and sees that there's a private structure associated to the file which has 'fsync_skip_inode_lock' set to true, so it skips locking the inode's VFS lock;7) Task A completes the direct IO write, and resets the file's private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode's VFS lock;8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode's VFS lock is held fails, since task B never locked it and task A has already unlocked it.The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: <TASK> ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7eAnother problem here is if task B grabs the private pointer and then usesit after task A has finished, since the private was allocated in the stackof task A, it results in some invalid memory access with a hard to predictresult.This issue, triggering the assertion, was observed with QEMU workloads bytwo users in the Link tags below.Fix this by not relying on a file's private to pass information to fsyncthat it should skip locking the inode and instead pass this informationthrough a special value stored in current->journal_info. This is safebecause in the relevant section of the direct IO write path we are notholding a transaction handle, so current->journal_info is NULL.The following C program triggers the issue: $ cat repro.c /* Get the O_DIRECT definition. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stdint.h> #include <fcntl.h> #include <errno.h> #include <string.h> #include <pthread.h> static int fd; static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset) { while (count > 0) { ssize_t ret; ret = pwrite(fd, buf, count, offset); if (ret < 0) { if (errno == EINTR) continue; return ret; } count -= ret; buf += ret; } return 0; } static void *fsync_loop(void *arg) { while (1) { int ret; ret = fsync(fd); if (ret != 0) { perror("Fsync failed"); exit(6); } } } int main(int argc, char *argv[]) { long pagesize; void *write_buf; pthread_t fsyncer; int ret; if (argc != 2) { fprintf(stderr, "Use: %s <file path>\n", argv[0]); return 1; } fd = open(argv[1], O_WRONLY |
已分析 | 2.openEulerScore | 3.9 |
已分析 | 3.openEulerVector | AV:L/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:L |
已分析 | 4.受影响版本排查 | openEuler-24.03-LTS:受影响,openEuler-20.03-LTS-SP4:不受影响,openEuler-22.03-LTS-SP1:不受影响,openEuler-22.03-LTS-SP3:不受影响,openEuler-22.03-LTS-SP4:不受影响,master:不受影响,openEuler-24.03-LTS-Next:不受影响 |
已分析 | 5.修复是否涉及abi变化 | openEuler-20.03-LTS-SP4:否,openEuler-22.03-LTS-SP1:否,openEuler-22.03-LTS-SP3:否,master:否,openEuler-24.03-LTS:否,openEuler-24.03-LTS-Next:否,openEuler-22.03-LTS-SP4:否 |
请确认分析内容的准确性, 确认无误后, 您可以进行后续步骤, 否则您可以继续分析.
@gatieme ,@xiexiuqi ,@yangyingliang ,@pi3orama ,@jiaoff ,@ci-robot
关闭issue前,需要将受影响的分支在合并pr时关联上当前issue编号: #IARY1Z
受影响分支: openEuler-24.03-LTS
具体操作参考: https://gitee.com/help/articles/4142
CVE-2024-46734
影响性分析说明:
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between direct IO write and fsync when using same fd
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
A user space program opens a file descriptor with O_DIRECT;
The program spawns 2 threads using libpthread for example;
One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Another problem here is if task B grabs the private pointer and then uses
it after task A has finished, since the private was allocated in the stack
of task A, it results in some invalid memory access with a hard to predict
result.
This issue, triggering the assertion, was observed with QEMU workloads by
two users in the Link tags below.
Fix this by not relying on a file's private to pass information to fsync
that it should skip locking the inode and instead pass this information
through a special value stored in current->journal_info. This is safe
because in the relevant section of the direct IO write path we are not
holding a transaction handle, so current->journal_info is NULL.
The following C program triggers the issue:
$ cat repro.c
/* Get the O_DIRECT definition. */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
static int fd;
static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset)
{
while (count > 0) {
ssize_t ret;
ret = pwrite(fd, buf, count, offset);
if (ret < 0) {
if (errno == EINTR)
continue;
return ret;
}
count -= ret;
buf += ret;
}
return 0;
}
static void *fsync_loop(void *arg)
{
while (1) {
int ret;
ret = fsync(fd);
if (ret != 0) {
perror("Fsync failed");
exit(6);
}
}
}
int main(int argc, char *argv[])
{
long pagesize;
void *write_buf;
pthread_t fsyncer;
int ret;
if (argc != 2) {
fprintf(stderr, "Use: %s <file path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666);
if (fd == -1) {
perror("Failed to open/create file");
return 1;
}
pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1) {
perror("Failed to get page size");
return 2;
}
ret = posix_memalign(&write_buf, pagesize, pagesize);
if (ret) {
perror("Failed to allocate buffer");
return 3;
}
ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to create writer thread: %d\n", ret);
return 4;
}
while (1) {
ret = do_write(fd, write_buf, pagesize, 0);
if (ret != 0) {
perror("Write failed");
exit(5);
}
}
return 0;
}
mkfs.btrfs−f/dev/sdi mount /dev/sdi /mnt/sdi
$ timeout 10 ./repro /mnt/sdi/foo
Usually the race is triggered within less than 1 second. A test case for
fstests will follow soon.
The Linux kernel CVE team has assigned CVE-2024-46734 to this issue.
openEuler评分:(评分和向量)
5.5
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
受影响版本排查(受影响/不受影响):
1.openEuler-20.03-LTS-SP4:不受影响
2.openEuler-22.03-LTS-SP1:不受影响
3.openEuler-22.03-LTS-SP3:不受影响
4.openEuler-22.03-LTS-SP4:不受影响
5.master(6.1.0):不受影响
6.openEuler-24.03-LTS:受影响
7.openEuler-24.03-LTS-Next:不受影响
修复是否涉及abi变化(是/否):
1.openEuler-20.03-LTS-SP4:否
2.openEuler-22.03-LTS-SP1:否
3.openEuler-22.03-LTS-SP3:否
4.master(6.1.0):否
5.openEuler-24.03-LTS:否
6.openEuler-24.03-LTS-Next:否
7.openEuler-22.03-LTS-SP4:否
@ 经过 cve-manager 解析, 已分析的内容如下表所示:
状态 | 需分析 | 内容 |
---|---|---|
已分析 | 1.影响性分析说明 | In the Linux kernel, the following vulnerability has been resolved:btrfs: fix race between direct IO write and fsync when using same fdIf we have 2 threads that are using the same file descriptor and one ofthem is doing direct IO writes while the other is doing fsync, we have arace where we can end up either:1) Attempt a fsync without holding the inode's lock, triggering an assertion failures when assertions are enabled;2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed.The race happens like this:1) A user space program opens a file descriptor with O_DIRECT;2) The program spawns 2 threads using libpthread for example;3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor.4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs;5) Task A does a direct IO write, and at btrfs_direct_write() sets the file's private to an on stack allocated private with the member 'fsync_skip_inode_lock' set to true;6) Task B enters btrfs_sync_file() and sees that there's a private structure associated to the file which has 'fsync_skip_inode_lock' set to true, so it skips locking the inode's VFS lock;7) Task A completes the direct IO write, and resets the file's private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode's VFS lock;8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode's VFS lock is held fails, since task B never locked it and task A has already unlocked it.The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: <TASK> ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7eAnother problem here is if task B grabs the private pointer and then usesit after task A has finished, since the private was allocated in the stackof task A, it results in some invalid memory access with a hard to predictresult.This issue, triggering the assertion, was observed with QEMU workloads bytwo users in the Link tags below.Fix this by not relying on a file's private to pass information to fsyncthat it should skip locking the inode and instead pass this informationthrough a special value stored in current->journal_info. This is safebecause in the relevant section of the direct IO write path we are notholding a transaction handle, so current->journal_info is NULL.The following C program triggers the issue: $ cat repro.c /* Get the O_DIRECT definition. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stdint.h> #include <fcntl.h> #include <errno.h> #include <string.h> #include <pthread.h> static int fd; static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset) { while (count > 0) { ssize_t ret; ret = pwrite(fd, buf, count, offset); if (ret < 0) { if (errno == EINTR) continue; return ret; } count -= ret; buf += ret; } return 0; } static void *fsync_loop(void *arg) { while (1) { int ret; ret = fsync(fd); if (ret != 0) { perror("Fsync failed"); exit(6); } } } int main(int argc, char *argv[]) { long pagesize; void *write_buf; pthread_t fsyncer; int ret; if (argc != 2) { fprintf(stderr, "Use: %s <file path>\n", argv[0]); return 1; } fd = open(argv[1], O_WRONLY |
已分析 | 2.openEulerScore | 5.5 |
已分析 | 3.openEulerVector | AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H |
已分析 | 4.受影响版本排查 | openEuler-24.03-LTS:受影响,openEuler-20.03-LTS-SP4:不受影响,openEuler-22.03-LTS-SP1:不受影响,openEuler-22.03-LTS-SP3:不受影响,openEuler-22.03-LTS-SP4:不受影响,master:不受影响,openEuler-24.03-LTS-Next:不受影响 |
已分析 | 5.修复是否涉及abi变化 | openEuler-20.03-LTS-SP4:否,openEuler-22.03-LTS-SP1:否,openEuler-22.03-LTS-SP3:否,master:否,openEuler-24.03-LTS:否,openEuler-24.03-LTS-Next:否,openEuler-22.03-LTS-SP4:否 |
请确认分析内容的准确性, 确认无误后, 您可以进行后续步骤, 否则您可以继续分析.
CVE-2024-46734
影响性分析说明:
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between direct IO write and fsync when using same fd
If we have 2 threads that are using the same file descriptor and one of
them is doing direct IO writes while the other is doing fsync, we have a
race where we can end up either:
Attempt a fsync without holding the inode's lock, triggering an
assertion failures when assertions are enabled;
Do an invalid memory access from the fsync task because the file private
points to memory allocated on stack by the direct IO task and it may be
used by the fsync task after the stack was destroyed.
The race happens like this:
A user space program opens a file descriptor with O_DIRECT;
The program spawns 2 threads using libpthread for example;
One of the threads uses the file descriptor to do direct IO writes,
while the other calls fsync using the same file descriptor.
Call task A the thread doing direct IO writes and task B the thread
doing fsyncs;
Task A does a direct IO write, and at btrfs_direct_write() sets the
file's private to an on stack allocated private with the member
'fsync_skip_inode_lock' set to true;
Task B enters btrfs_sync_file() and sees that there's a private
structure associated to the file which has 'fsync_skip_inode_lock' set
to true, so it skips locking the inode's VFS lock;
Task A completes the direct IO write, and resets the file's private to
NULL since it had no prior private and our private was stack allocated.
Then it unlocks the inode's VFS lock;
Task B enters btrfs_get_ordered_extents_for_logging(), then the
assertion that checks the inode's VFS lock is held fails, since task B
never locked it and task A has already unlocked it.
The stack trace produced is the following:
assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983
------------[ cut here ]------------
kernel BUG at fs/btrfs/ordered-data.c:983!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8
Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020
RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs]
Code: 50 d6 86 c0 e8 (...)
RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246
RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800
RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38
R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800
R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000
FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x24
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? exc_invalid_op+0x50/0x70
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? asm_exc_invalid_op+0x1a/0x20
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a]
? __seccomp_filter+0x31d/0x4f0
__x64_sys_fdatasync+0x4f/0x90
do_syscall_64+0x82/0x160
? do_futex+0xcb/0x190
? __x64_sys_futex+0x10e/0x1d0
? switch_fpu_return+0x4f/0xd0
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
? syscall_exit_to_user_mode+0x72/0x220
? do_syscall_64+0x8e/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Another problem here is if task B grabs the private pointer and then uses
it after task A has finished, since the private was allocated in the stack
of task A, it results in some invalid memory access with a hard to predict
result.
This issue, triggering the assertion, was observed with QEMU workloads by
two users in the Link tags below.
Fix this by not relying on a file's private to pass information to fsync
that it should skip locking the inode and instead pass this information
through a special value stored in current->journal_info. This is safe
because in the relevant section of the direct IO write path we are not
holding a transaction handle, so current->journal_info is NULL.
The following C program triggers the issue:
$ cat repro.c
/* Get the O_DIRECT definition. */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <pthread.h>
static int fd;
static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset)
{
while (count > 0) {
ssize_t ret;
ret = pwrite(fd, buf, count, offset);
if (ret < 0) {
if (errno == EINTR)
continue;
return ret;
}
count -= ret;
buf += ret;
}
return 0;
}
static void *fsync_loop(void *arg)
{
while (1) {
int ret;
ret = fsync(fd);
if (ret != 0) {
perror("Fsync failed");
exit(6);
}
}
}
int main(int argc, char *argv[])
{
long pagesize;
void *write_buf;
pthread_t fsyncer;
int ret;
if (argc != 2) {
fprintf(stderr, "Use: %s <file path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666);
if (fd == -1) {
perror("Failed to open/create file");
return 1;
}
pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1) {
perror("Failed to get page size");
return 2;
}
ret = posix_memalign(&write_buf, pagesize, pagesize);
if (ret) {
perror("Failed to allocate buffer");
return 3;
}
ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL);
if (ret != 0) {
fprintf(stderr, "Failed to create writer thread: %d\n", ret);
return 4;
}
while (1) {
ret = do_write(fd, write_buf, pagesize, 0);
if (ret != 0) {
perror("Write failed");
exit(5);
}
}
return 0;
}
mkfs.btrfs−f/dev/sdi mount /dev/sdi /mnt/sdi
$ timeout 10 ./repro /mnt/sdi/foo
Usually the race is triggered within less than 1 second. A test case for
fstests will follow soon.
The Linux kernel CVE team has assigned CVE-2024-46734 to this issue.
openEuler评分:(评分和向量)
5.5
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
受影响版本排查(受影响/不受影响):
1.openEuler-20.03-LTS-SP4:不受影响
2.openEuler-22.03-LTS-SP1:不受影响
3.openEuler-22.03-LTS-SP3:不受影响
4.openEuler-22.03-LTS-SP4:不受影响
5.master(6.1.0):不受影响
6.openEuler-24.03-LTS:受影响
7.openEuler-24.03-LTS-Next:不受影响
修复是否涉及abi变化(是/否):
1.openEuler-20.03-LTS-SP4:否
2.openEuler-22.03-LTS-SP1:否
3.openEuler-22.03-LTS-SP3:否
4.master(6.1.0):否
5.openEuler-24.03-LTS:否
6.openEuler-24.03-LTS-Next:否
7.openEuler-22.03-LTS-SP4:否
@ 经过 cve-manager 解析, 已分析的内容如下表所示:
状态 | 需分析 | 内容 |
---|---|---|
已分析 | 1.影响性分析说明 | In the Linux kernel, the following vulnerability has been resolved:btrfs: fix race between direct IO write and fsync when using same fdIf we have 2 threads that are using the same file descriptor and one ofthem is doing direct IO writes while the other is doing fsync, we have arace where we can end up either:1) Attempt a fsync without holding the inode's lock, triggering an assertion failures when assertions are enabled;2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed.The race happens like this:1) A user space program opens a file descriptor with O_DIRECT;2) The program spawns 2 threads using libpthread for example;3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor.4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs;5) Task A does a direct IO write, and at btrfs_direct_write() sets the file's private to an on stack allocated private with the member 'fsync_skip_inode_lock' set to true;6) Task B enters btrfs_sync_file() and sees that there's a private structure associated to the file which has 'fsync_skip_inode_lock' set to true, so it skips locking the inode's VFS lock;7) Task A completes the direct IO write, and resets the file's private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode's VFS lock;8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode's VFS lock is held fails, since task B never locked it and task A has already unlocked it.The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: <TASK> ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7eAnother problem here is if task B grabs the private pointer and then usesit after task A has finished, since the private was allocated in the stackof task A, it results in some invalid memory access with a hard to predictresult.This issue, triggering the assertion, was observed with QEMU workloads bytwo users in the Link tags below.Fix this by not relying on a file's private to pass information to fsyncthat it should skip locking the inode and instead pass this informationthrough a special value stored in current->journal_info. This is safebecause in the relevant section of the direct IO write path we are notholding a transaction handle, so current->journal_info is NULL.The following C program triggers the issue: $ cat repro.c /* Get the O_DIRECT definition. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stdint.h> #include <fcntl.h> #include <errno.h> #include <string.h> #include <pthread.h> static int fd; static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset) { while (count > 0) { ssize_t ret; ret = pwrite(fd, buf, count, offset); if (ret < 0) { if (errno == EINTR) continue; return ret; } count -= ret; buf += ret; } return 0; } static void *fsync_loop(void *arg) { while (1) { int ret; ret = fsync(fd); if (ret != 0) { perror("Fsync failed"); exit(6); } } } int main(int argc, char *argv[]) { long pagesize; void *write_buf; pthread_t fsyncer; int ret; if (argc != 2) { fprintf(stderr, "Use: %s <file path>\n", argv[0]); return 1; } fd = open(argv[1], O_WRONLY |
已分析 | 2.openEulerScore | 5.5 |
已分析 | 3.openEulerVector | AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H |
已分析 | 4.受影响版本排查 | openEuler-24.03-LTS:受影响,openEuler-20.03-LTS-SP4:不受影响,openEuler-22.03-LTS-SP1:不受影响,openEuler-22.03-LTS-SP3:不受影响,openEuler-22.03-LTS-SP4:不受影响,master:不受影响,openEuler-24.03-LTS-Next:不受影响 |
已分析 | 5.修复是否涉及abi变化 | openEuler-20.03-LTS-SP4:否,openEuler-22.03-LTS-SP1:否,openEuler-22.03-LTS-SP3:否,master:否,openEuler-24.03-LTS:否,openEuler-24.03-LTS-Next:否,openEuler-22.03-LTS-SP4:否 |
请确认分析内容的准确性, 确认无误后, 您可以进行后续步骤, 否则您可以继续分析.
登录 后才可以发表评论
FileDragTip