代码拉取完成,页面将自动刷新
# -*-coding:utf-8-*-
import os
import json
import cv2
import sys
import traceback
import argparse
from flask import Flask, Response, request
import datetime
from queue import Queue
import threading
import multiprocessing
import time
import random
from setproctitle import setproctitle
from config import Config
import tools.logger as logger_
from tools.infer.utility import base64_to_cv2, mkdir
from predict_system import OCR
from translate.API import translate
app = Flask("server", static_url_path='')
app.config['PROPAGATE_EXCEPTIONS'] = True
_save_image_q = Queue(1000)
config = Config()
@app.route("/dango/algo/ocr/server", methods=['POST', 'GET'])
def ocr_server():
try:
logger.info("-" * 50)
logger.info("端口 {} /dango/algo/ocr/server 收到请求".format(g_port))
now_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
day = "-".join(now_time.split("-")[:3])
# params = request.get_json()
content = request.form
images = content['image']
language_type = content['language_type']
user_id = content["user_id"]
platform = content.get('platform', None)
need_translate = content.get("translate", 'no')
s1 = time.time()
images_decode = [base64_to_cv2(images)]
logger.info("收到: {}, {}, {}".format(user_id, platform, language_type))
result = ocr.predict(language_type, images=images_decode)
logger.info("识别结果为: {}, 是否需要翻译: {}".format(result, need_translate))
save_basename = "{}/{}/{}_{}_{}_{}_{}".format(config.save_dir + "/" + g_port, day, g_port, platform, user_id,
language_type, now_time)
_save_image_q.put([save_basename, images_decode, result])
translated = False
response_data = {'result': result, 'translated': translated}
if need_translate == 'yes':
logger.info("开始进行翻译...")
s3 = time.time()
rand_idx = random.randint(0, len(config.baidu_translate_secret_key) - 1)
fanyi_app_id = config.baidu_translate_app_id[rand_idx]
fanyi_secret_key = config.baidu_translate_secret_key[rand_idx]
translate_result, translated = translate(result[0], fanyi_app_id, fanyi_secret_key, logger)
if translated:
logger.info("翻译成功: {}, 结果为: {}".format(translated, translate_result))
response_data['translate_result'] = translate_result
response_data['translated'] = translated
else:
logger.info("翻译失败: {}, 错误码: {}".format(translated, translate_result))
s4 = time.time()
logger.info("翻译耗时: {}".format(s4 - s3))
s2 = time.time()
logger.info("==>> 完成, 总耗时 {} , 开始回复: {}".format(s2 - s1, response_data))
return Response(json.dumps({'status': 0, 'data': response_data}),
mimetype='application/json')
except:
e = traceback.format_exc()
logger.info("错误")
logger.error(e)
return Response(json.dumps({'status': -1, 'data': 'None'}), mimetype='application/json')
def save_img():
while True:
try:
save_basename, image_cv2, words_result = _save_image_q.get(block=True)
assert len(image_cv2) == len(words_result)
for idx, img in enumerate(image_cv2):
save_name = save_basename + "_" + str(idx) + ".jpg"
mkdir(os.path.dirname(save_name))
cv2.imwrite(save_name, img)
with open(save_name.replace(".jpg", ".txt"), "w") as f:
f.write(str(words_result[idx]))
logger.info('保存图片 {} 及 txt'.format(save_name))
except:
e = traceback.format_exc()
logger.info(e)
def do_work(gpu, port):
global logger, g_port, ocr
try:
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu)
logger = logger_.get_logger("./log/ocr_{}.log".format(port))
g_port = port
logger.info("===>>> 初始化模型到gpu:{}, port: {}".format(gpu, port))
ocr = OCR(config, logger, language_list)
logger.info("==>> 启动成功")
app.run(host=config.host, port=port, threaded=True)
except BaseException as e:
logger.error('错误,启动flask异常{}'.format(e))
logger.info(traceback.format_exc())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, help='gpu index: 0_1_2_3', default="0")
parser.add_argument('--port', type=str, help='server port: 8811_8812_8813', default="8811")
parser.add_argument('--det', type=str, help='detection model', default="DB")
parser.add_argument('--rec', type=str, help='recognize language model', default="ch,japan,en,korean")
args = parser.parse_args()
setproctitle('ocr_server_{}_{}'.format(args.port, args.rec))
ports = args.port.split("_") # [args.port]
gpus = args.gpu.split("_") # [args.gpu]
language_list = args.rec.replace(" ", "").split(",")
if len(gpus) == 1:
gpus = gpus * len(ports)
gpu_num = len(gpus)
port_num = len(ports)
if gpu_num != port_num:
print('启动失败:GPU数量 != 端口数量!')
sys.exit(1)
threading.Thread(target=save_img, name="save img").start()
do_work(gpu=gpus[0], port=ports[0])
# pool = multiprocessing.Pool(processes=port_num)
# for index in range(port_num):
# pool.apply_async(do_work, (gpus[index], ports[index]))
# pool.close()
# pool.join()
# save_img()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。