Ai
1 Star 0 Fork 0

zhangming8/ocr_algo_server

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
ocr_server.py 5.60 KB
一键复制 编辑 原始数据 按行查看 历史
zhangming8 提交于 2021-01-03 18:32 +08:00 . return translated result
# -*-coding:utf-8-*-
import os
import json
import cv2
import sys
import traceback
import argparse
from flask import Flask, Response, request
import datetime
from queue import Queue
import threading
import multiprocessing
import time
import random
from setproctitle import setproctitle
from config import Config
import tools.logger as logger_
from tools.infer.utility import base64_to_cv2, mkdir
from predict_system import OCR
from translate.API import translate
app = Flask("server", static_url_path='')
app.config['PROPAGATE_EXCEPTIONS'] = True
_save_image_q = Queue(1000)
config = Config()
@app.route("/dango/algo/ocr/server", methods=['POST', 'GET'])
def ocr_server():
try:
logger.info("-" * 50)
logger.info("端口 {} /dango/algo/ocr/server 收到请求".format(g_port))
now_time = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
day = "-".join(now_time.split("-")[:3])
# params = request.get_json()
content = request.form
images = content['image']
language_type = content['language_type']
user_id = content["user_id"]
platform = content.get('platform', None)
need_translate = content.get("translate", 'no')
s1 = time.time()
images_decode = [base64_to_cv2(images)]
logger.info("收到: {}, {}, {}".format(user_id, platform, language_type))
result = ocr.predict(language_type, images=images_decode)
logger.info("识别结果为: {}, 是否需要翻译: {}".format(result, need_translate))
save_basename = "{}/{}/{}_{}_{}_{}_{}".format(config.save_dir + "/" + g_port, day, g_port, platform, user_id,
language_type, now_time)
_save_image_q.put([save_basename, images_decode, result])
translated = False
response_data = {'result': result, 'translated': translated}
if need_translate == 'yes':
logger.info("开始进行翻译...")
s3 = time.time()
rand_idx = random.randint(0, len(config.baidu_translate_secret_key) - 1)
fanyi_app_id = config.baidu_translate_app_id[rand_idx]
fanyi_secret_key = config.baidu_translate_secret_key[rand_idx]
translate_result, translated = translate(result[0], fanyi_app_id, fanyi_secret_key, logger)
if translated:
logger.info("翻译成功: {}, 结果为: {}".format(translated, translate_result))
response_data['translate_result'] = translate_result
response_data['translated'] = translated
else:
logger.info("翻译失败: {}, 错误码: {}".format(translated, translate_result))
s4 = time.time()
logger.info("翻译耗时: {}".format(s4 - s3))
s2 = time.time()
logger.info("==>> 完成, 总耗时 {} , 开始回复: {}".format(s2 - s1, response_data))
return Response(json.dumps({'status': 0, 'data': response_data}),
mimetype='application/json')
except:
e = traceback.format_exc()
logger.info("错误")
logger.error(e)
return Response(json.dumps({'status': -1, 'data': 'None'}), mimetype='application/json')
def save_img():
while True:
try:
save_basename, image_cv2, words_result = _save_image_q.get(block=True)
assert len(image_cv2) == len(words_result)
for idx, img in enumerate(image_cv2):
save_name = save_basename + "_" + str(idx) + ".jpg"
mkdir(os.path.dirname(save_name))
cv2.imwrite(save_name, img)
with open(save_name.replace(".jpg", ".txt"), "w") as f:
f.write(str(words_result[idx]))
logger.info('保存图片 {} 及 txt'.format(save_name))
except:
e = traceback.format_exc()
logger.info(e)
def do_work(gpu, port):
global logger, g_port, ocr
try:
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu)
logger = logger_.get_logger("./log/ocr_{}.log".format(port))
g_port = port
logger.info("===>>> 初始化模型到gpu:{}, port: {}".format(gpu, port))
ocr = OCR(config, logger, language_list)
logger.info("==>> 启动成功")
app.run(host=config.host, port=port, threaded=True)
except BaseException as e:
logger.error('错误,启动flask异常{}'.format(e))
logger.info(traceback.format_exc())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, help='gpu index: 0_1_2_3', default="0")
parser.add_argument('--port', type=str, help='server port: 8811_8812_8813', default="8811")
parser.add_argument('--det', type=str, help='detection model', default="DB")
parser.add_argument('--rec', type=str, help='recognize language model', default="ch,japan,en,korean")
args = parser.parse_args()
setproctitle('ocr_server_{}_{}'.format(args.port, args.rec))
ports = args.port.split("_") # [args.port]
gpus = args.gpu.split("_") # [args.gpu]
language_list = args.rec.replace(" ", "").split(",")
if len(gpus) == 1:
gpus = gpus * len(ports)
gpu_num = len(gpus)
port_num = len(ports)
if gpu_num != port_num:
print('启动失败:GPU数量 != 端口数量!')
sys.exit(1)
threading.Thread(target=save_img, name="save img").start()
do_work(gpu=gpus[0], port=ports[0])
# pool = multiprocessing.Pool(processes=port_num)
# for index in range(port_num):
# pool.apply_async(do_work, (gpus[index], ports[index]))
# pool.close()
# pool.join()
# save_img()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zhangming8/ocr_algo_server.git
git@gitee.com:zhangming8/ocr_algo_server.git
zhangming8
ocr_algo_server
ocr_algo_server
main

搜索帮助