代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/javascript-algorithms 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import ComplexNumber from '../complex-number/ComplexNumber';
const CLOSE_TO_ZERO_THRESHOLD = 1e-10;
/**
* Inverse Discrete Fourier Transform (IDFT): frequencies to time.
*
* Time complexity: O(N^2)
*
* @param {ComplexNumber[]} frequencies - Frequencies summands of the final signal.
* @param {number} zeroThreshold - Threshold that is used to convert real and imaginary numbers
* to zero in case if they are smaller then this.
*
* @return {number[]} - Discrete amplitudes distributed in time.
*/
export default function inverseDiscreteFourierTransform(
frequencies,
zeroThreshold = CLOSE_TO_ZERO_THRESHOLD,
) {
const N = frequencies.length;
const amplitudes = [];
// Go through every discrete point of time.
for (let timer = 0; timer < N; timer += 1) {
// Compound amplitude at current time.
let amplitude = new ComplexNumber();
// Go through all discrete frequencies.
for (let frequency = 0; frequency < N; frequency += 1) {
const currentFrequency = frequencies[frequency];
// Calculate rotation angle.
const rotationAngle = (2 * Math.PI) * frequency * (timer / N);
// Remember that e^ix = cos(x) + i * sin(x);
const frequencyContribution = new ComplexNumber({
re: Math.cos(rotationAngle),
im: Math.sin(rotationAngle),
}).multiply(currentFrequency);
amplitude = amplitude.add(frequencyContribution);
}
// Close to zero? You're zero.
if (Math.abs(amplitude.re) < zeroThreshold) {
amplitude.re = 0;
}
if (Math.abs(amplitude.im) < zeroThreshold) {
amplitude.im = 0;
}
// Add current frequency signal to the list of compound signals.
amplitudes[timer] = amplitude.re;
}
return amplitudes;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。