代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/javascript-algorithms 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/**
* Dynamic programming approach to find longest increasing subsequence.
* Complexity: O(n * n)
*
* @param {number[]} sequence
* @return {number}
*/
export default function dpLongestIncreasingSubsequence(sequence) {
// Create array with longest increasing substrings length and
// fill it with 1-s that would mean that each element of the sequence
// is itself a minimum increasing subsequence.
const lengthsArray = Array(sequence.length).fill(1);
let previousElementIndex = 0;
let currentElementIndex = 1;
while (currentElementIndex < sequence.length) {
if (sequence[previousElementIndex] < sequence[currentElementIndex]) {
// If current element is bigger then the previous one then
// current element is a part of increasing subsequence which
// length is by one bigger then the length of increasing subsequence
// for previous element.
const newLength = lengthsArray[previousElementIndex] + 1;
if (newLength > lengthsArray[currentElementIndex]) {
// Increase only if previous element would give us bigger subsequence length
// then we already have for current element.
lengthsArray[currentElementIndex] = newLength;
}
}
// Move previous element index right.
previousElementIndex += 1;
// If previous element index equals to current element index then
// shift current element right and reset previous element index to zero.
if (previousElementIndex === currentElementIndex) {
currentElementIndex += 1;
previousElementIndex = 0;
}
}
// Find the biggest element in lengthsArray.
// This number is the biggest length of increasing subsequence.
let longestIncreasingLength = 0;
for (let i = 0; i < lengthsArray.length; i += 1) {
if (lengthsArray[i] > longestIncreasingLength) {
longestIncreasingLength = lengthsArray[i];
}
}
return longestIncreasingLength;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。