代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/javascript-algorithms 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/**
* DYNAMIC PROGRAMMING approach of solving Unique Paths problem.
*
* @param {number} width - Width of the board.
* @param {number} height - Height of the board.
* @return {number} - Number of unique paths.
*/
export default function dpUniquePaths(width, height) {
// Init board.
const board = Array(height).fill(null).map(() => {
return Array(width).fill(0);
});
// Base case.
// There is only one way of getting to board[0][any] and
// there is also only one way of getting to board[any][0].
// This is because we have a restriction of moving right
// and down only.
for (let rowIndex = 0; rowIndex < height; rowIndex += 1) {
for (let columnIndex = 0; columnIndex < width; columnIndex += 1) {
if (rowIndex === 0 || columnIndex === 0) {
board[rowIndex][columnIndex] = 1;
}
}
}
// Now, since we have this restriction of moving only to the right
// and down we might say that number of unique paths to the current
// cell is a sum of numbers of unique paths to the cell above the
// current one and to the cell to the left of current one.
for (let rowIndex = 1; rowIndex < height; rowIndex += 1) {
for (let columnIndex = 1; columnIndex < width; columnIndex += 1) {
const uniquesFromTop = board[rowIndex - 1][columnIndex];
const uniquesFromLeft = board[rowIndex][columnIndex - 1];
board[rowIndex][columnIndex] = uniquesFromTop + uniquesFromLeft;
}
}
return board[height - 1][width - 1];
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。