代码拉取完成,页面将自动刷新
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
CENTERNET_PATH = '../src'
sys.path.insert(0, CENTERNET_PATH)
MODEL_PATH = '../models/ctdet_coco_dla_2x.pth'
import os
import _init_paths
import torch
import torch.utils.data
from opts import opts
from models.model import create_model, load_model, save_model
from models.data_parallel import DataParallel
from logger import Logger
from datasets.dataset_factory import get_dataset
def convert():
#device = torch.device("cpu")
device = torch.device("cuda")
torch.set_default_tensor_type(torch.cuda.FloatTensor)
TASK = 'ctdet'
opt = opts().parse('{} --load_model {}'.format(TASK, MODEL_PATH).split(' '))
Dataset = get_dataset(opt.dataset, opt.task)
opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
model = create_model(opt.arch, opt.heads, opt.head_conv)
model = load_model(model, input_file, None, opt.resume, opt.lr, opt.lr_step)
model.eval()
input_names = ["actual_input"]
output_names = ["output1","output2","output3"]
dynamic_axes = {'actual_input': {0: '-1'}, 'output1': {0: '-1'}, 'output2': {0: '-1'}, 'output3': {0: '-1'}}
dummy_input = torch.randn(1, 3, 512, 512)
torch.onnx.export(model, dummy_input, output_file, input_names = input_names, dynamic_axes = dynamic_axes, output_names = output_names, opset_version=11, verbose=True)
if __name__ == "__main__":
input_file = sys.argv[1]
output_file = sys.argv[2]
convert()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。