Ai
1 Star 2 Fork 5

LilithSangreal/LeetCode-Solutions

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
integer-break.cpp 2.04 KB
一键复制 编辑 原始数据 按行查看 历史
kamyu 提交于 2016-05-17 19:55 +08:00 . Update integer-break.cpp
// Time: O(logn), pow is O(logn).
// Space: O(1)
class Solution {
public:
int integerBreak(int n) {
if (n < 4) {
return n - 1;
}
// Proof.
// 1. Let n = a1 + a2 + ... + ak, product = a1 * a2 * ... * ak
// - For each ai >= 4, we can always maximize the product by:
// ai <= 2 * (ai - 2)
// - For each aj >= 5, we can always maximize the product by:
// aj <= 3 * (aj - 3)
//
// Conclusion 1:
// - For n >= 4, the max of the product must be in the form of
// 3^a * 2^b, s.t. 3a + 2b = n
//
// 2. To maximize the product = 3^a * 2^b s.t. 3a + 2b = n
// - For each b >= 3, we can always maximize the product by:
// 3^a * 2^b <= 3^(a+2) * 2^(b-3) s.t. 3(a+2) + 2(b-3) = n
//
// Conclusion 2:
// - For n >= 4, the max of the product must be in the form of
// 3^Q * 2^R, 0 <= R < 3 s.t. 3Q + 2R = n
// i.e.
// if n = 3Q + 0, the max of the product = 3^Q * 2^0
// if n = 3Q + 2, the max of the product = 3^Q * 2^1
// if n = 3Q + 2*2, the max of the product = 3^Q * 2^2
int res = 0;
if (n % 3 == 0) { // n = 3Q + 0, the max is 3^Q * 2^0
res = pow(3, n / 3);
} else if (n % 3 == 2) { // n = 3Q + 2, the max is 3^Q * 2^1
res = pow(3, n / 3) * 2;
} else { // n = 3Q + 4, the max is 3^Q * 2^2
res = pow(3, n / 3 - 1) * 4;
}
return res;
}
};
// Time: O(n)
// Space: O(1)
// DP solution.
class Solution2 {
public:
int integerBreak(int n) {
if (n < 4) {
return n - 1;
}
// integerBreak(n) = max(integerBreak(n - 2) * 2, integerBreak(n - 3) * 3)
vector<int> res{0, 1, 2, 3};
for (int i = 4; i <= n; ++i) {
res[i % 4] = max(res[(i - 2) % 4] * 2, res[(i - 3) % 4] * 3);
}
return res[n % 4];
}
};
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/LilithSangreal/LeetCode-Solutions.git
git@gitee.com:LilithSangreal/LeetCode-Solutions.git
LilithSangreal
LeetCode-Solutions
LeetCode-Solutions
master

搜索帮助