代码拉取完成,页面将自动刷新
# Time: O(sqrt(n))
# Space: O(1)
class Solution(object):
def consecutiveNumbersSum(self, N):
"""
:type N: int
:rtype: int
"""
# x + x+1 + x+2 + ... + x+l-1 = N = 2^k * M, where M is odd
# => l*x + (l-1)*l/2 = 2^k * M
# => x = (2^k * M -(l-1)*l/2)/l= 2^k * M/l - (l-1)/2 is integer
# => l could be 2 or any odd factor of M (excluding M)
# s.t. x = 2^k * M/l - (l-1)/2 is integer, and also unique
# => the answer is the number of all odd factors of M
# if prime factorization of N is 2^k * p1^a * p2^b * ..
# => answer is the number of all odd factors = (a+1) * (b+1) * ...
result = 1
while N % 2 == 0:
N /= 2
i = 3
while i*i <= N:
count = 0
while N % i == 0:
N /= i
count += 1
result *= count+1
i += 2
if N > 1:
result *= 2
return result
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。