代码拉取完成,页面将自动刷新
# Time: O(n * 4^n / n^(3/2)) ~= n * Catalan numbers = n * (C(2n, n) - C(2n, n - 1)),
# due to the size of the results is Catalan numbers,
# and every way of evaluation is the length of the string,
# so the time complexity is at most n * Catalan numbers.
# Space: O(n * 4^n / n^(3/2)), the cache size of lookup is at most n * Catalan numbers.
import operator
import re
class Solution(object):
# @param {string} input
# @return {integer[]}
def diffWaysToCompute(self, input):
tokens = re.split('(\D)', input)
nums = map(int, tokens[::2])
ops = map({'+': operator.add, '-': operator.sub, '*': operator.mul}.get, tokens[1::2])
lookup = [[None for _ in xrange(len(nums))] for _ in xrange(len(nums))]
def diffWaysToComputeRecu(left, right):
if left == right:
return [nums[left]]
if lookup[left][right]:
return lookup[left][right]
lookup[left][right] = [ops[i](x, y)
for i in xrange(left, right)
for x in diffWaysToComputeRecu(left, i)
for y in diffWaysToComputeRecu(i + 1, right)]
return lookup[left][right]
return diffWaysToComputeRecu(0, len(nums) - 1)
class Solution2(object):
# @param {string} input
# @return {integer[]}
def diffWaysToCompute(self, input):
lookup = [[None for _ in xrange(len(input) + 1)] for _ in xrange(len(input) + 1)]
ops = {'+': operator.add, '-': operator.sub, '*': operator.mul}
def diffWaysToComputeRecu(left, right):
if lookup[left][right]:
return lookup[left][right]
result = []
for i in xrange(left, right):
if input[i] in ops:
for x in diffWaysToComputeRecu(left, i):
for y in diffWaysToComputeRecu(i + 1, right):
result.append(ops[input[i]](x, y))
if not result:
result = [int(input[left:right])]
lookup[left][right] = result
return lookup[left][right]
return diffWaysToComputeRecu(0, len(input))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。