Ai
1 Star 2 Fork 5

LilithSangreal/LeetCode-Solutions

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
integer-break.py 2.07 KB
一键复制 编辑 原始数据 按行查看 历史
Allen Liu 提交于 2018-10-13 01:56 +08:00 . add complexity
# Time: O(logn), pow is O(logn).
# Space: O(1)
class Solution(object):
def integerBreak(self, n):
"""
:type n: int
:rtype: int
"""
if n < 4:
return n - 1
# Proof.
# 1. Let n = a1 + a2 + ... + ak, product = a1 * a2 * ... * ak
# - For each ai >= 4, we can always maximize the product by:
# ai <= 2 * (ai - 2)
# - For each aj >= 5, we can always maximize the product by:
# aj <= 3 * (aj - 3)
#
# Conclusion 1:
# - For n >= 4, the max of the product must be in the form of
# 3^a * 2^b, s.t. 3a + 2b = n
#
# 2. To maximize the product = 3^a * 2^b s.t. 3a + 2b = n
# - For each b >= 3, we can always maximize the product by:
# 3^a * 2^b <= 3^(a+2) * 2^(b-3) s.t. 3(a+2) + 2(b-3) = n
#
# Conclusion 2:
# - For n >= 4, the max of the product must be in the form of
# 3^Q * 2^R, 0 <= R < 3 s.t. 3Q + 2R = n
# i.e.
# if n = 3Q + 0, the max of the product = 3^Q * 2^0
# if n = 3Q + 2, the max of the product = 3^Q * 2^1
# if n = 3Q + 2*2, the max of the product = 3^Q * 2^2
res = 0
if n % 3 == 0: # n = 3Q + 0, the max is 3^Q * 2^0
res = 3 ** (n // 3)
elif n % 3 == 2: # n = 3Q + 2, the max is 3^Q * 2^1
res = 3 ** (n // 3) * 2
else: # n = 3Q + 4, the max is 3^Q * 2^2
res = 3 ** (n // 3 - 1) * 4
return res
# Time: O(n)
# Space: O(1)
# DP solution.
class Solution2(object):
def integerBreak(self, n):
"""
:type n: int
:rtype: int
"""
if n < 4:
return n - 1
# integerBreak(n) = max(integerBreak(n - 2) * 2, integerBreak(n - 3) * 3)
res = [0, 1, 2, 3]
for i in xrange(4, n + 1):
res[i % 4] = max(res[(i - 2) % 4] * 2, res[(i - 3) % 4] * 3)
return res[n % 4]
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/LilithSangreal/LeetCode-Solutions.git
git@gitee.com:LilithSangreal/LeetCode-Solutions.git
LilithSangreal
LeetCode-Solutions
LeetCode-Solutions
master

搜索帮助