This project is for classification of emotions using EEG signals recorded in the DEAP dataset to achieve high accuracy score using machine learning algorithms such as Support vector machine and K - Nearest Neighbor.
This project is for classification of emotions using EEG signals recorded in the DEAP dataset to achieve high accuracy score using machine learning algorithms such as Support vector machine and K - Nearest Neighbor.
Emotion Recognition from EEG Signals using the DEAP dataset with 86.4% accuracy. Applied multiple machine learning models and implemented various signal transforming algorithms like the DWT algorithm.
基于Tensorflow,OpenCV. 使用MNIST数据集训练卷积神经网络模型,用于手写数字识别
台湾大学李宏毅老师机器学习
EEG Emotion classification using the DEAP pre-processed data
最近一年贡献:0 次
最长连续贡献:0 日
最近连续贡献:0 日
贡献度的统计数据包括代码提交、创建任务 / Pull Request、合并 Pull Request,其中代码提交的次数需本地配置的 git 邮箱是 Gitee 帐号已确认绑定的才会被统计。