1 Star 0 Fork 1

actionchen / cgminer

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
driver-avalon8.c 84.31 KB
一键复制 编辑 原始数据 按行查看 历史
Johnson-Fan 提交于 2018-11-01 20:07 . Fix no hashrate of Avalon8
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968
/*
* Copyright 2017 xuzhenxing <xuzhenxing@canaan-creative.com>
* Copyright 2016-2017 Mikeqin <Fengling.Qin@gmail.com>
* Copyright 2016 Con Kolivas <kernel@kolivas.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <math.h>
#include "config.h"
#include "miner.h"
#include "driver-avalon8.h"
#include "crc.h"
#include "sha2.h"
#include "hexdump.c"
#define get_fan_pwm(v) (AVA8_PWM_MAX - (v) * AVA8_PWM_MAX / 100)
int opt_avalon8_temp_target = AVA8_DEFAULT_TEMP_TARGET;
int opt_avalon8_fan_min = AVA8_DEFAULT_FAN_MIN;
int opt_avalon8_fan_max = AVA8_DEFAULT_FAN_MAX;
int opt_avalon8_voltage_level = AVA8_INVALID_VOLTAGE_LEVEL;
int opt_avalon8_voltage_level_offset = AVA8_DEFAULT_VOLTAGE_LEVEL_OFFSET;
int opt_avalon8_asic_otp = AVA8_INVALID_ASIC_OTP;
static uint8_t opt_avalon8_cycle_hit_flag;
int opt_avalon8_freq[AVA8_DEFAULT_PLL_CNT] =
{
AVA8_DEFAULT_FREQUENCY,
AVA8_DEFAULT_FREQUENCY,
AVA8_DEFAULT_FREQUENCY,
AVA8_DEFAULT_FREQUENCY
};
int opt_avalon8_freq_sel = AVA8_DEFAULT_FREQUENCY_SEL;
int opt_avalon8_polling_delay = AVA8_DEFAULT_POLLING_DELAY;
int opt_avalon8_aucspeed = AVA8_AUC_SPEED;
int opt_avalon8_aucxdelay = AVA8_AUC_XDELAY;
int opt_avalon8_smart_speed = AVA8_DEFAULT_SMART_SPEED;
/*
* smart speed have 2 modes
* 1. auto speed by A3210 chips
* 2. option 1 + adjust by average frequency
*/
bool opt_avalon8_iic_detect = AVA8_DEFAULT_IIC_DETECT;
uint32_t opt_avalon8_th_pass = AVA8_INVALID_TH_PASS;
uint32_t opt_avalon8_th_fail = AVA8_INVALID_TH_FAIL;
uint32_t opt_avalon8_th_init = AVA8_DEFAULT_TH_INIT;
uint32_t opt_avalon8_th_ms = AVA8_DEFAULT_TH_MS;
uint32_t opt_avalon8_th_timeout = AVA8_INVALID_TH_TIMEOUT;
uint32_t opt_avalon8_th_add = AVA8_DEFAULT_TH_ADD;
uint32_t opt_avalon8_nonce_mask = AVA8_INVALID_NONCE_MASK;
uint32_t opt_avalon8_nonce_check = AVA8_DEFAULT_NONCE_CHECK;
uint32_t opt_avalon8_mux_l2h = AVA8_DEFAULT_MUX_L2H;
uint32_t opt_avalon8_mux_h2l = AVA8_DEFAULT_MUX_H2L;
uint32_t opt_avalon8_h2ltime0_spd = AVA8_DEFAULT_H2LTIME0_SPD;
uint32_t opt_avalon8_roll_enable = AVA8_DEFAULT_ROLL_ENABLE;
uint32_t opt_avalon8_spdlow = AVA8_INVALID_SPDLOW;
uint32_t opt_avalon8_spdhigh = AVA8_DEFAULT_SPDHIGH;
uint32_t opt_avalon8_pid_p = AVA8_DEFAULT_PID_P;
uint32_t opt_avalon8_pid_i = AVA8_DEFAULT_PID_I;
uint32_t opt_avalon8_pid_d = AVA8_DEFAULT_PID_D;
uint32_t cpm_table[] =
{
0x04400000,
0x04000000,
0x008ffbe1,
0x0097fde1,
0x009fffe1,
0x009ddf61,
0x009dcf61,
0x009f47c1,
0x009fbfe1,
0x009f37c1,
0x009daf61,
0x009b26c1,
0x009da761,
0x00999e61,
0x009b9ee1,
0x009d9f61,
0x009f9fe1,
0x00991641,
0x009a96a1,
0x009c1701,
0x009d9761,
0x009f17c1,
0x00958d61,
0x00968da1,
0x00978de1,
0x00988e21,
0x00998e61,
0x009a8ea1,
0x009b8ee1,
0x009c8f21,
0x009d8f61,
0x009e8fa1,
0x009f8fe1,
0x00900401,
0x00908421,
0x00910441,
0x00918461,
0x00920481,
0x009284a1,
0x009304c1,
0x009384e1,
0x00940501,
0x00948521,
0x00950541,
0x00958561,
0x00960581,
0x009685a1,
0x009705c1,
0x009785e1
};
struct avalon8_dev_description avalon8_dev_table[] = {
{
"821",
821,
4,
26,
AVA8_MM821_VIN_ADC_RATIO,
AVA8_MM821_VOUT_ADC_RATIO,
5,
{
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_650M
}
},
{
"831",
831,
4,
26,
AVA8_MM831_VIN_ADC_RATIO,
AVA8_MM831_VOUT_ADC_RATIO,
5,
{
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_725M
}
},
{
"841",
841,
4,
26,
AVA8_MM841_VIN_ADC_RATIO,
AVA8_MM841_VOUT_ADC_RATIO,
5,
{
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_775M
}
},
{
"851",
851,
4,
26,
AVA8_MM851_VIN_ADC_RATIO,
AVA8_MM851_VOUT_ADC_RATIO,
5,
{
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_0M,
AVA8_DEFAULT_FREQUENCY_850M
}
}
};
static uint32_t api_get_cpm(uint32_t freq)
{
return cpm_table[freq / 25];
}
static uint32_t encode_voltage(int volt_level)
{
if (volt_level > AVA8_DEFAULT_VOLTAGE_LEVEL_MAX)
volt_level = AVA8_DEFAULT_VOLTAGE_LEVEL_MAX;
else if (volt_level < AVA8_DEFAULT_VOLTAGE_LEVEL_MIN)
volt_level = AVA8_DEFAULT_VOLTAGE_LEVEL_MIN;
if (volt_level < 0)
return 0x8080 | (-volt_level);
return 0x8000 | volt_level;
}
static uint32_t decode_voltage(struct avalon8_info *info, int modular_id, uint32_t volt)
{
return (volt * info->vout_adc_ratio[modular_id] / info->asic_count[modular_id] / 100);
}
static uint16_t decode_vin(struct avalon8_info *info, int modular_id, uint16_t volt)
{
return (volt * info->vin_adc_ratio[modular_id] / 1000);
}
static double decode_pvt_temp(uint16_t pvt_code)
{
double g = 60.0;
double h = 200.0;
double cal5 = 4094.0;
double j = -0.1;
double fclkm = 6.25;
/* Mode2 temperature equation */
return g + h * (pvt_code / cal5 - 0.5) + j * fclkm;
}
static uint32_t decode_pvt_volt(uint16_t volt)
{
double vref = 1.20;
double r = 16384.0; /* 2 ** 14 */
double c;
c = vref / 5.0 * (6 * (volt - 0.5) / r - 1.0);
if (c < 0)
c = 0;
return c * 1000;
}
#define SERIESRESISTOR 10000
#define THERMISTORNOMINAL 10000
#define BCOEFFICIENT 3500
#define TEMPERATURENOMINAL 25
float decode_auc_temp(int value)
{
float ret, resistance;
if (!((value > 0) && (value < 33000)))
return -273;
resistance = (3.3 * 10000 / value) - 1;
resistance = SERIESRESISTOR / resistance;
ret = resistance / THERMISTORNOMINAL;
ret = logf(ret);
ret /= BCOEFFICIENT;
ret += 1.0 / (TEMPERATURENOMINAL + 273.15);
ret = 1.0 / ret;
ret -= 273.15;
return ret;
}
#define UNPACK32(x, str) \
{ \
*((str) + 3) = (uint8_t) ((x) ); \
*((str) + 2) = (uint8_t) ((x) >> 8); \
*((str) + 1) = (uint8_t) ((x) >> 16); \
*((str) + 0) = (uint8_t) ((x) >> 24); \
}
static inline void sha256_prehash(const unsigned char *message, unsigned int len, unsigned char *digest)
{
int i;
sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, message, len);
for (i = 0; i < 8; i++)
UNPACK32(ctx.h[i], &digest[i << 2]);
}
char *set_avalon8_fan(char *arg)
{
int val1, val2, ret;
ret = sscanf(arg, "%d-%d", &val1, &val2);
if (ret < 1)
return "No value passed to avalon8-fan";
if (ret == 1)
val2 = val1;
if (val1 < 0 || val1 > 100 || val2 < 0 || val2 > 100 || val2 < val1)
return "Invalid value passed to avalon8-fan";
opt_avalon8_fan_min = val1;
opt_avalon8_fan_max = val2;
return NULL;
}
char *set_avalon8_freq(char *arg)
{
int val[AVA8_DEFAULT_PLL_CNT];
char *colon, *data;
int i;
if (!(*arg))
return NULL;
data = arg;
memset(val, 0, sizeof(val));
for (i = 0; i < AVA8_DEFAULT_PLL_CNT; i++) {
colon = strchr(data, ':');
if (colon)
*(colon++) = '\0';
else {
/* last value */
if (*data) {
val[i] = atoi(data);
if (val[i] > AVA8_DEFAULT_FREQUENCY_MAX)
return "Invalid value passed to avalon8-freq";
}
break;
}
if (*data) {
val[i] = atoi(data);
if (val[i] > AVA8_DEFAULT_FREQUENCY_MAX)
return "Invalid value passed to avalon8-freq";
}
data = colon;
}
for (i = 0; i < AVA8_DEFAULT_PLL_CNT; i++)
opt_avalon8_freq[i] = val[i];
return NULL;
}
char *set_avalon8_voltage_level(char *arg)
{
int val, ret;
ret = sscanf(arg, "%d", &val);
if (ret < 1)
return "No value passed to avalon8-voltage-level";
if (val < AVA8_DEFAULT_VOLTAGE_LEVEL_MIN || val > AVA8_DEFAULT_VOLTAGE_LEVEL_MAX)
return "Invalid value passed to avalon8-voltage-level";
opt_avalon8_voltage_level = val;
return NULL;
}
char *set_avalon8_voltage_level_offset(char *arg)
{
int val, ret;
ret = sscanf(arg, "%d", &val);
if (ret < 1)
return "No value passed to avalon8-voltage-level-offset";
if (val < AVA8_DEFAULT_VOLTAGE_LEVEL_OFFSET_MIN || val > AVA8_DEFAULT_VOLTAGE_LEVEL_OFFSET_MAX)
return "Invalid value passed to avalon8-voltage-level-offset";
opt_avalon8_voltage_level_offset = val;
return NULL;
}
char *set_avalon8_asic_otp(char *arg)
{
int val, ret;
ret = sscanf(arg, "%d", &val);
if (ret < 1)
return "No value passed to avalon8-cinfo-asic";
if (val < 0 || val > (AVA8_DEFAULT_ASIC_MAX - 1))
return "Invalid value passed to avalon8-cinfo-asic";
opt_avalon8_asic_otp = val;
opt_avalon8_cycle_hit_flag = 0;
return NULL;
}
static int avalon8_init_pkg(struct avalon8_pkg *pkg, uint8_t type, uint8_t idx, uint8_t cnt)
{
unsigned short crc;
pkg->head[0] = AVA8_H1;
pkg->head[1] = AVA8_H2;
pkg->type = type;
pkg->opt = 0;
pkg->idx = idx;
pkg->cnt = cnt;
crc = crc16(pkg->data, AVA8_P_DATA_LEN);
pkg->crc[0] = (crc & 0xff00) >> 8;
pkg->crc[1] = crc & 0xff;
return 0;
}
static int job_idcmp(uint8_t *job_id, char *pool_job_id)
{
int job_id_len;
unsigned short crc, crc_expect;
if (!pool_job_id)
return 1;
job_id_len = strlen(pool_job_id);
crc_expect = crc16((unsigned char *)pool_job_id, job_id_len);
crc = job_id[0] << 8 | job_id[1];
if (crc_expect == crc)
return 0;
applog(LOG_DEBUG, "avalon8: job_id doesn't match! [%04x:%04x (%s)]",
crc, crc_expect, pool_job_id);
return 1;
}
static inline int get_temp_max(struct avalon8_info *info, int addr)
{
int i, j;
int max = -273;
for (i = 0; i < info->miner_count[addr]; i++) {
for (j = 0; j < info->asic_count[addr]; j++) {
if (info->temp[addr][i][j] > max)
max = info->temp[addr][i][j];
}
}
if (max < info->temp_mm[addr])
max = info->temp_mm[addr];
return max;
}
/*
* Incremental PID controller
*
* controller input: u, output: t
*
* delta_u = P * [e(k) - e(k-1)] + I * e(k) + D * [e(k) - 2*e(k-1) + e(k-2)];
* e(k) = t(k) - t[target];
* u(k) = u(k-1) + delta_u;
*
*/
static inline uint32_t adjust_fan(struct avalon8_info *info, int id)
{
int t;
double delta_u;
double delta_p, delta_i, delta_d;
uint32_t pwm;
t = get_temp_max(info, id);
/* update target error */
info->pid_e[id][2] = info->pid_e[id][1];
info->pid_e[id][1] = info->pid_e[id][0];
info->pid_e[id][0] = t - info->temp_target[id];
if (t > AVA8_DEFAULT_PID_TEMP_MAX) {
info->pid_u[id] = opt_avalon8_fan_max;
} else if (t < AVA8_DEFAULT_PID_TEMP_MIN) {
info->pid_u[id] = opt_avalon8_fan_min;
} else if (!info->pid_0[id]) {
/* first, init u as t */
info->pid_0[id] = 1;
info->pid_u[id] = t;
} else {
delta_p = info->pid_p[id] * (info->pid_e[id][0] - info->pid_e[id][1]);
delta_i = info->pid_i[id] * info->pid_e[id][0];
delta_d = info->pid_d[id] * (info->pid_e[id][0] - 2 * info->pid_e[id][1] + info->pid_e[id][2]);
/*Parameter I is int type(1, 2, 3...), but should be used as a smaller value (such as 0.1, 0.01...)*/
delta_u = delta_p + delta_i / 100 + delta_d;
info->pid_u[id] += delta_u;
}
if(info->pid_u[id] > opt_avalon8_fan_max)
info->pid_u[id] = opt_avalon8_fan_max;
if (info->pid_u[id] < opt_avalon8_fan_min)
info->pid_u[id] = opt_avalon8_fan_min;
/* Round from float to int */
info->fan_pct[id] = (int)(info->pid_u[id] + 0.5);
pwm = get_fan_pwm(info->fan_pct[id]);
return pwm;
}
static int decode_pkg(struct cgpu_info *avalon8, struct avalon8_ret *ar, int modular_id)
{
struct avalon8_info *info = avalon8->device_data;
struct pool *pool, *real_pool;
struct pool *pool_stratum0 = &info->pool0;
struct pool *pool_stratum1 = &info->pool1;
struct pool *pool_stratum2 = &info->pool2;
struct thr_info *thr = NULL;
unsigned short expected_crc;
unsigned short actual_crc;
uint32_t nonce, nonce2, ntime, miner, chip_id, tmp;
uint8_t job_id[2];
int pool_no;
uint32_t i;
int64_t last_diff1;
uint16_t vin;
uint32_t asic_id,miner_id;
if (likely(avalon8->thr))
thr = avalon8->thr[0];
if (ar->head[0] != AVA8_H1 && ar->head[1] != AVA8_H2) {
applog(LOG_DEBUG, "%s-%d-%d: H1 %02x, H2 %02x",
avalon8->drv->name, avalon8->device_id, modular_id,
ar->head[0], ar->head[1]);
hexdump(ar->data, 32);
return 1;
}
expected_crc = crc16(ar->data, AVA8_P_DATA_LEN);
actual_crc = ((ar->crc[0] & 0xff) << 8) | (ar->crc[1] & 0xff);
if (expected_crc != actual_crc) {
applog(LOG_DEBUG, "%s-%d-%d: %02x: expected crc(%04x), actual_crc(%04x)",
avalon8->drv->name, avalon8->device_id, modular_id,
ar->type, expected_crc, actual_crc);
return 1;
}
switch(ar->type) {
case AVA8_P_NONCE:
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_NONCE", avalon8->drv->name, avalon8->device_id, modular_id);
memcpy(&miner, ar->data + 0, 4);
memcpy(&nonce2, ar->data + 4, 4);
memcpy(&ntime, ar->data + 8, 4);
memcpy(&nonce, ar->data + 12, 4);
job_id[0] = ar->data[16];
job_id[1] = ar->data[17];
pool_no = (ar->data[18] | (ar->data[19] << 8));
miner = be32toh(miner);
chip_id = (miner >> 16) & 0xffff;
miner &= 0xffff;
ntime = be32toh(ntime);
if (miner >= info->miner_count[modular_id] ||
pool_no >= total_pools || pool_no < 0) {
applog(LOG_DEBUG, "%s-%d-%d: Wrong miner/pool_no %d/%d",
avalon8->drv->name, avalon8->device_id, modular_id,
miner, pool_no);
break;
}
nonce2 = be32toh(nonce2);
nonce = be32toh(nonce);
if (ntime > info->max_ntime)
info->max_ntime = ntime;
applog(LOG_NOTICE, "%s-%d-%d: Found! P:%d - N2:%08x N:%08x NR:%d/%d [M:%d, A:%d, C:%d - MW: (%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64")]",
avalon8->drv->name, avalon8->device_id, modular_id,
pool_no, nonce2, nonce, ntime, info->max_ntime,
miner, chip_id, nonce & 0x7f,
info->chip_matching_work[modular_id][miner][0],
info->chip_matching_work[modular_id][miner][1],
info->chip_matching_work[modular_id][miner][2],
info->chip_matching_work[modular_id][miner][3]);
real_pool = pool = pools[pool_no];
if (job_idcmp(job_id, pool->swork.job_id)) {
if (!job_idcmp(job_id, pool_stratum0->swork.job_id)) {
applog(LOG_DEBUG, "%s-%d-%d: Match to previous stratum0! (%s)",
avalon8->drv->name, avalon8->device_id, modular_id,
pool_stratum0->swork.job_id);
pool = pool_stratum0;
} else if (!job_idcmp(job_id, pool_stratum1->swork.job_id)) {
applog(LOG_DEBUG, "%s-%d-%d: Match to previous stratum1! (%s)",
avalon8->drv->name, avalon8->device_id, modular_id,
pool_stratum1->swork.job_id);
pool = pool_stratum1;
} else if (!job_idcmp(job_id, pool_stratum2->swork.job_id)) {
applog(LOG_DEBUG, "%s-%d-%d: Match to previous stratum2! (%s)",
avalon8->drv->name, avalon8->device_id, modular_id,
pool_stratum2->swork.job_id);
pool = pool_stratum2;
} else {
applog(LOG_ERR, "%s-%d-%d: Cannot match to any stratum! (%s)",
avalon8->drv->name, avalon8->device_id, modular_id,
pool->swork.job_id);
if (likely(thr))
inc_hw_errors(thr);
info->hw_works_i[modular_id][miner]++;
break;
}
}
/* Can happen during init sequence before add_cgpu */
if (unlikely(!thr))
break;
last_diff1 = avalon8->diff1;
if (!submit_nonce2_nonce(thr, pool, real_pool, nonce2, nonce, ntime))
info->hw_works_i[modular_id][miner]++;
else {
info->diff1[modular_id] += (avalon8->diff1 - last_diff1);
info->chip_matching_work[modular_id][miner][chip_id]++;
}
break;
case AVA8_P_STATUS:
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS", avalon8->drv->name, avalon8->device_id, modular_id);
hexdump(ar->data, 32);
memcpy(&tmp, ar->data, 4);
tmp = be32toh(tmp);
info->temp_mm[modular_id] = tmp;
avalon8->temp = decode_auc_temp(info->auc_sensor);
memcpy(&tmp, ar->data + 4, 4);
tmp = be32toh(tmp);
info->fan_cpm[modular_id] = tmp;
memcpy(&tmp, ar->data + 8, 4);
info->local_works_i[modular_id][ar->idx] += be32toh(tmp);
memcpy(&tmp, ar->data + 12, 4);
info->hw_works_i[modular_id][ar->idx] += be32toh(tmp);
memcpy(&tmp, ar->data + 16, 4);
info->error_code[modular_id][ar->idx] = be32toh(tmp);
memcpy(&tmp, ar->data + 20, 4);
info->error_code[modular_id][ar->cnt] = be32toh(tmp);
memcpy(&tmp, ar->data + 24, 4);
info->error_crc[modular_id][ar->idx] += be32toh(tmp);
break;
case AVA8_P_STATUS_PMU:
/* TODO: decode ntc led from PMU */
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_PMU", avalon8->drv->name, avalon8->device_id, modular_id);
info->power_good[modular_id] = ar->data[16];
for (i = 0; i < AVA8_DEFAULT_PMU_CNT; i++) {
memcpy(&info->pmu_version[modular_id][i], ar->data + 24 + (i * 4), 4);
info->pmu_version[modular_id][i][4] = '\0';
}
for (i = 0; i < info->miner_count[modular_id]; i++) {
memcpy(&vin, ar->data + 8 + i * 2, 2);
info->get_vin[modular_id][i] = decode_vin(info, modular_id, be16toh(vin));
}
break;
case AVA8_P_STATUS_OTP:
if (opt_avalon8_cycle_hit_flag)
break;
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_OTP", avalon8->drv->name, avalon8->device_id, modular_id);
/* ASIC reading cycle limit hit */
if (ar->data[AVA8_OTP_INDEX_CYCLE_HIT]) {
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_OTP, OTP read cycle hit!", avalon8->drv->name, avalon8->device_id, modular_id);
opt_avalon8_cycle_hit_flag = 1;
break;
}
miner_id = ar->idx;
if (miner_id > AVA8_DEFAULT_MINER_CNT)
break;
/* the reading step on MM side, 0:byte 3-0, 1:byte 7-4, 2:byte 11-8, 3:byte 15-12 */
switch (ar->data[AVA8_OTP_INDEX_READ_STEP]) {
case 0:
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INFO_LOTIDCRC_OFFSET, ar->data + AVA8_OTP_INFO_LOTIDCRC_OFFSET, 4);
break;
case 1:
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INFO_LOTIDCRC_OFFSET + 4, ar->data + AVA8_OTP_INFO_LOTIDCRC_OFFSET + 4, 2);
break;
case 2:
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INFO_LOTID_OFFSET, ar->data + AVA8_OTP_INFO_LOTID_OFFSET, 4);
break;
case 3:
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INFO_LOTID_OFFSET + 4, ar->data + AVA8_OTP_INFO_LOTID_OFFSET + 4, 4);
break;
case 4:
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INFO_LOTID_OFFSET + 8, ar->data + AVA8_OTP_INFO_LOTID_OFFSET + 8, 4);
break;
case 5:
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INFO_LOTID_OFFSET + 12, ar->data + AVA8_OTP_INFO_LOTID_OFFSET + 12, 4);
break;
case 6:
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INFO_LOTID_OFFSET + 16, ar->data + AVA8_OTP_INFO_LOTID_OFFSET + 16, 4);
break;
default:
break;
}
/* get the data behind AVA8_OTP_INDEX_READ_STEP for later displaying use */
memcpy(info->otp_info[modular_id][miner_id] + AVA8_OTP_INDEX_READ_STEP, ar->data + AVA8_OTP_INDEX_READ_STEP, 4);
break;
case AVA8_P_STATUS_VOLT:
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_VOLT", avalon8->drv->name, avalon8->device_id, modular_id);
for (i = 0; i < info->miner_count[modular_id]; i++) {
memcpy(&tmp, ar->data + i * 4, 4);
info->get_voltage[modular_id][i] = decode_voltage(info, modular_id, be32toh(tmp));
}
break;
case AVA8_P_STATUS_PLL:
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_PLL", avalon8->drv->name, avalon8->device_id, modular_id);
for (i = 0; i < AVA8_DEFAULT_PLL_CNT; i++) {
memcpy(&tmp, ar->data + i * 4, 4);
info->get_pll[modular_id][ar->idx][i] = be32toh(tmp);
memcpy(&tmp, ar->data + AVA8_DEFAULT_PLL_CNT * 4 + i * 4, 4);
tmp = be32toh(tmp);
if (tmp)
info->set_frequency[modular_id][ar->idx][i] = tmp;
}
break;
case AVA8_P_STATUS_PVT:
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_PVT", avalon8->drv->name, avalon8->device_id, modular_id);
if (!strncmp((char *)&(info->mm_version[modular_id]), "851", 3)) {
if (!info->asic_count[modular_id])
break;
if (ar->idx < info->asic_count[modular_id]) {
for (i = 0; i < info->miner_count[modular_id]; i++) {
memcpy(&tmp, ar->data + i * 4, 2);
tmp = be16toh(tmp);
info->temp[modular_id][i][ar->idx] = decode_pvt_temp(tmp);
memcpy(&tmp, ar->data + i * 4 + 2, 2);
tmp = be16toh(tmp);
info->core_volt[modular_id][i][ar->idx][0] = decode_pvt_volt(tmp);
}
}
} else {
uint16_t pvt_tmp;
if (!info->asic_count[modular_id])
break;
miner = ar->idx / info->asic_count[modular_id];
chip_id = ar->idx % info->asic_count[modular_id];
memcpy(&pvt_tmp, ar->data, 2);
pvt_tmp = be16toh(pvt_tmp);
info->temp[modular_id][miner][chip_id] = decode_pvt_temp(pvt_tmp);
for (i = 0; i < AVA8_DEFAULT_CORE_VOLT_CNT; i++) {
memcpy(&pvt_tmp, ar->data + 2 + 2 * i, 2);
pvt_tmp = be16toh(pvt_tmp);
info->core_volt[modular_id][miner][chip_id][i] = decode_pvt_volt(pvt_tmp);
}
}
break;
case AVA8_P_STATUS_ASIC:
{
int miner_id;
int asic_id;
uint16_t freq;
if (!info->asic_count[modular_id])
break;
miner_id = ar->idx / info->asic_count[modular_id];
asic_id = ar->idx % info->asic_count[modular_id];
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_ASIC %d-%d",
avalon8->drv->name, avalon8->device_id, modular_id,
miner_id, asic_id);
memcpy(&tmp, ar->data + 0, 4);
if (tmp)
info->get_asic[modular_id][miner_id][asic_id][0] = be32toh(tmp);
memcpy(&tmp, ar->data + 4, 4);
if (tmp)
info->get_asic[modular_id][miner_id][asic_id][1] = be32toh(tmp);
for (i = 0; i < AVA8_DEFAULT_PLL_CNT; i++)
info->get_asic[modular_id][miner_id][asic_id][2 + i] = ar->data[8 + i];
if (!strncmp((char *)&(info->mm_version[modular_id]), "851", 3)) {
for (i = 0; i < AVA8_DEFAULT_PLL_CNT; i++) {
memcpy(&freq, ar->data + 8 + AVA8_DEFAULT_PLL_CNT + i * 2, 2);
info->get_frequency[modular_id][miner_id][asic_id][i] = be16toh(freq);
}
}
}
break;
case AVA8_P_STATUS_FAC:
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_FAC", avalon8->drv->name, avalon8->device_id, modular_id);
info->factory_info[0] = ar->data[0];
break;
case AVA8_P_STATUS_OC:
applog(LOG_DEBUG, "%s-%d-%d: AVA8_P_STATUS_OC", avalon8->drv->name, avalon8->device_id, modular_id);
info->overclocking_info[0] = ar->data[0];
break;
default:
applog(LOG_DEBUG, "%s-%d-%d: Unknown response %x", avalon8->drv->name, avalon8->device_id, modular_id, ar->type);
break;
}
return 0;
}
/*
# IIC packet format: length[1]+transId[1]+sesId[1]+req[1]+data[60]
# length: 4+len(data)
# transId: 0
# sesId: 0
# req: checkout the header file
# data:
# INIT: clock_rate[4] + reserved[4] + payload[52]
# XFER: txSz[1]+rxSz[1]+options[1]+slaveAddr[1] + payload[56]
*/
static int avalon8_auc_init_pkg(uint8_t *iic_pkg, struct avalon8_iic_info *iic_info, uint8_t *buf, int wlen, int rlen)
{
memset(iic_pkg, 0, AVA8_AUC_P_SIZE);
switch (iic_info->iic_op) {
case AVA8_IIC_INIT:
iic_pkg[0] = 12; /* 4 bytes IIC header + 4 bytes speed + 4 bytes xfer delay */
iic_pkg[3] = AVA8_IIC_INIT;
iic_pkg[4] = iic_info->iic_param.aucParam[0] & 0xff;
iic_pkg[5] = (iic_info->iic_param.aucParam[0] >> 8) & 0xff;
iic_pkg[6] = (iic_info->iic_param.aucParam[0] >> 16) & 0xff;
iic_pkg[7] = iic_info->iic_param.aucParam[0] >> 24;
iic_pkg[8] = iic_info->iic_param.aucParam[1] & 0xff;
iic_pkg[9] = (iic_info->iic_param.aucParam[1] >> 8) & 0xff;
iic_pkg[10] = (iic_info->iic_param.aucParam[1] >> 16) & 0xff;
iic_pkg[11] = iic_info->iic_param.aucParam[1] >> 24;
break;
case AVA8_IIC_XFER:
iic_pkg[0] = 8 + wlen;
iic_pkg[3] = AVA8_IIC_XFER;
iic_pkg[4] = wlen;
iic_pkg[5] = rlen;
iic_pkg[7] = iic_info->iic_param.slave_addr;
if (buf && wlen)
memcpy(iic_pkg + 8, buf, wlen);
break;
case AVA8_IIC_RESET:
case AVA8_IIC_DEINIT:
case AVA8_IIC_INFO:
iic_pkg[0] = 4;
iic_pkg[3] = iic_info->iic_op;
break;
default:
break;
}
return 0;
}
static int avalon8_iic_xfer(struct cgpu_info *avalon8, uint8_t slave_addr,
uint8_t *wbuf, int wlen,
uint8_t *rbuf, int rlen)
{
struct avalon8_info *info = avalon8->device_data;
struct i2c_ctx *pctx = NULL;
int err = 1;
bool ret = false;
pctx = info->i2c_slaves[slave_addr];
if (!pctx) {
applog(LOG_ERR, "%s-%d: IIC xfer i2c slaves null!", avalon8->drv->name, avalon8->device_id);
goto out;
}
if (wbuf) {
ret = pctx->write_raw(pctx, wbuf, wlen);
if (!ret) {
applog(LOG_DEBUG, "%s-%d: IIC xfer write raw failed!", avalon8->drv->name, avalon8->device_id);
goto out;
}
}
cgsleep_ms(5);
if (rbuf) {
ret = pctx->read_raw(pctx, rbuf, rlen);
if (!ret) {
applog(LOG_DEBUG, "%s-%d: IIC xfer read raw failed!", avalon8->drv->name, avalon8->device_id);
hexdump(rbuf, rlen);
goto out;
}
}
return 0;
out:
return err;
}
static int avalon8_auc_xfer(struct cgpu_info *avalon8,
uint8_t *wbuf, int wlen, int *write,
uint8_t *rbuf, int rlen, int *read)
{
int err = -1;
if (unlikely(avalon8->usbinfo.nodev))
goto out;
usb_buffer_clear(avalon8);
err = usb_write(avalon8, (char *)wbuf, wlen, write, C_AVA8_WRITE);
if (err || *write != wlen) {
applog(LOG_DEBUG, "%s-%d: AUC xfer %d, w(%d-%d)!", avalon8->drv->name, avalon8->device_id, err, wlen, *write);
usb_nodev(avalon8);
goto out;
}
cgsleep_ms(opt_avalon8_aucxdelay / 4800 + 1);
rlen += 4; /* Add 4 bytes IIC header */
err = usb_read(avalon8, (char *)rbuf, rlen, read, C_AVA8_READ);
if (err || *read != rlen || *read != rbuf[0]) {
applog(LOG_DEBUG, "%s-%d: AUC xfer %d, r(%d-%d-%d)!", avalon8->drv->name, avalon8->device_id, err, rlen - 4, *read, rbuf[0]);
hexdump(rbuf, rlen);
return -1;
}
*read = rbuf[0] - 4; /* Remove 4 bytes IIC header */
out:
return err;
}
static int avalon8_auc_init(struct cgpu_info *avalon8, char *ver)
{
struct avalon8_iic_info iic_info;
int err, wlen, rlen;
uint8_t wbuf[AVA8_AUC_P_SIZE];
uint8_t rbuf[AVA8_AUC_P_SIZE];
if (unlikely(avalon8->usbinfo.nodev))
return 1;
/* Try to clean the AUC buffer */
usb_buffer_clear(avalon8);
err = usb_read(avalon8, (char *)rbuf, AVA8_AUC_P_SIZE, &rlen, C_AVA8_READ);
applog(LOG_DEBUG, "%s-%d: AUC usb_read %d, %d!", avalon8->drv->name, avalon8->device_id, err, rlen);
hexdump(rbuf, AVA8_AUC_P_SIZE);
/* Reset */
iic_info.iic_op = AVA8_IIC_RESET;
rlen = 0;
avalon8_auc_init_pkg(wbuf, &iic_info, NULL, 0, rlen);
memset(rbuf, 0, AVA8_AUC_P_SIZE);
err = avalon8_auc_xfer(avalon8, wbuf, AVA8_AUC_P_SIZE, &wlen, rbuf, rlen, &rlen);
if (err) {
applog(LOG_ERR, "%s-%d: Failed to reset Avalon USB2IIC Converter", avalon8->drv->name, avalon8->device_id);
return 1;
}
/* Deinit */
iic_info.iic_op = AVA8_IIC_DEINIT;
rlen = 0;
avalon8_auc_init_pkg(wbuf, &iic_info, NULL, 0, rlen);
memset(rbuf, 0, AVA8_AUC_P_SIZE);
err = avalon8_auc_xfer(avalon8, wbuf, AVA8_AUC_P_SIZE, &wlen, rbuf, rlen, &rlen);
if (err) {
applog(LOG_ERR, "%s-%d: Failed to deinit Avalon USB2IIC Converter", avalon8->drv->name, avalon8->device_id);
return 1;
}
/* Init */
iic_info.iic_op = AVA8_IIC_INIT;
iic_info.iic_param.aucParam[0] = opt_avalon8_aucspeed;
iic_info.iic_param.aucParam[1] = opt_avalon8_aucxdelay;
rlen = AVA8_AUC_VER_LEN;
avalon8_auc_init_pkg(wbuf, &iic_info, NULL, 0, rlen);
memset(rbuf, 0, AVA8_AUC_P_SIZE);
err = avalon8_auc_xfer(avalon8, wbuf, AVA8_AUC_P_SIZE, &wlen, rbuf, rlen, &rlen);
if (err) {
applog(LOG_ERR, "%s-%d: Failed to init Avalon USB2IIC Converter", avalon8->drv->name, avalon8->device_id);
return 1;
}
hexdump(rbuf, AVA8_AUC_P_SIZE);
memcpy(ver, rbuf + 4, AVA8_AUC_VER_LEN);
ver[AVA8_AUC_VER_LEN] = '\0';
applog(LOG_DEBUG, "%s-%d: USB2IIC Converter version: %s!", avalon8->drv->name, avalon8->device_id, ver);
return 0;
}
static int avalon8_auc_getinfo(struct cgpu_info *avalon8)
{
struct avalon8_iic_info iic_info;
int err, wlen, rlen;
uint8_t wbuf[AVA8_AUC_P_SIZE];
uint8_t rbuf[AVA8_AUC_P_SIZE];
uint8_t *pdata = rbuf + 4;
uint16_t adc_val;
struct avalon8_info *info = avalon8->device_data;
iic_info.iic_op = AVA8_IIC_INFO;
/*
* Device info: (9 bytes)
* tempadc(2), reqRdIndex, reqWrIndex,
* respRdIndex, respWrIndex, tx_flags, state
*/
rlen = 7;
avalon8_auc_init_pkg(wbuf, &iic_info, NULL, 0, rlen);
memset(rbuf, 0, AVA8_AUC_P_SIZE);
err = avalon8_auc_xfer(avalon8, wbuf, AVA8_AUC_P_SIZE, &wlen, rbuf, rlen, &rlen);
if (err) {
applog(LOG_ERR, "%s-%d: AUC Failed to get info ", avalon8->drv->name, avalon8->device_id);
return 1;
}
applog(LOG_DEBUG, "%s-%d: AUC tempADC(%03d), reqcnt(%d), respcnt(%d), txflag(%d), state(%d)",
avalon8->drv->name, avalon8->device_id,
pdata[1] << 8 | pdata[0],
pdata[2],
pdata[3],
pdata[5] << 8 | pdata[4],
pdata[6]);
adc_val = pdata[1] << 8 | pdata[0];
info->auc_sensor = 3.3 * adc_val * 10000 / 1023;
return 0;
}
static int avalon8_iic_xfer_pkg(struct cgpu_info *avalon8, uint8_t slave_addr,
const struct avalon8_pkg *pkg, struct avalon8_ret *ret)
{
struct avalon8_iic_info iic_info;
int err, wcnt, rcnt, rlen = 0;
uint8_t wbuf[AVA8_AUC_P_SIZE];
uint8_t rbuf[AVA8_AUC_P_SIZE];
struct avalon8_info *info = avalon8->device_data;
if (ret)
rlen = AVA8_READ_SIZE;
if (info->connecter == AVA8_CONNECTER_AUC) {
if (unlikely(avalon8->usbinfo.nodev))
return AVA8_SEND_ERROR;
iic_info.iic_op = AVA8_IIC_XFER;
iic_info.iic_param.slave_addr = slave_addr;
avalon8_auc_init_pkg(wbuf, &iic_info, (uint8_t *)pkg, AVA8_WRITE_SIZE, rlen);
err = avalon8_auc_xfer(avalon8, wbuf, wbuf[0], &wcnt, rbuf, rlen, &rcnt);
if ((pkg->type != AVA8_P_DETECT) && err == -7 && !rcnt && rlen) {
avalon8_auc_init_pkg(wbuf, &iic_info, NULL, 0, rlen);
err = avalon8_auc_xfer(avalon8, wbuf, wbuf[0], &wcnt, rbuf, rlen, &rcnt);
applog(LOG_DEBUG, "%s-%d-%d: AUC read again!(type:0x%x, err:%d)", avalon8->drv->name, avalon8->device_id, slave_addr, pkg->type, err);
}
if (err || rcnt != rlen) {
if (info->xfer_err_cnt++ == 100) {
applog(LOG_DEBUG, "%s-%d-%d: AUC xfer_err_cnt reach err = %d, rcnt = %d, rlen = %d",
avalon8->drv->name, avalon8->device_id, slave_addr,
err, rcnt, rlen);
cgsleep_ms(5 * 1000); /* Wait MM reset */
if (avalon8_auc_init(avalon8, info->auc_version)) {
applog(LOG_WARNING, "%s-%d: Failed to re-init auc, unplugging for new hotplug",
avalon8->drv->name, avalon8->device_id);
usb_nodev(avalon8);
}
}
return AVA8_SEND_ERROR;
}
if (ret)
memcpy((char *)ret, rbuf + 4, AVA8_READ_SIZE);
info->xfer_err_cnt = 0;
}
if (info->connecter == AVA8_CONNECTER_IIC) {
err = avalon8_iic_xfer(avalon8, slave_addr, (uint8_t *)pkg, AVA8_WRITE_SIZE, (uint8_t *)ret, AVA8_READ_SIZE);
if ((pkg->type != AVA8_P_DETECT) && err) {
err = avalon8_iic_xfer(avalon8, slave_addr, (uint8_t *)pkg, AVA8_WRITE_SIZE, (uint8_t *)ret, AVA8_READ_SIZE);
applog(LOG_DEBUG, "%s-%d-%d: IIC read again!(type:0x%x, err:%d)", avalon8->drv->name, avalon8->device_id, slave_addr, pkg->type, err);
}
if (err) {
/* FIXME: Don't care broadcast message with no reply, or it will block other thread when called by avalon8_send_bc_pkgs */
if ((pkg->type != AVA8_P_DETECT) && (slave_addr == AVA8_MODULE_BROADCAST))
return AVA8_SEND_OK;
if (info->xfer_err_cnt++ == 100) {
info->xfer_err_cnt = 0;
applog(LOG_DEBUG, "%s-%d-%d: IIC xfer_err_cnt reach err = %d, rcnt = %d, rlen = %d",
avalon8->drv->name, avalon8->device_id, slave_addr,
err, rcnt, rlen);
cgsleep_ms(5 * 1000); /* Wait MM reset */
}
return AVA8_SEND_ERROR;
}
info->xfer_err_cnt = 0;
}
return AVA8_SEND_OK;
}
static int avalon8_send_bc_pkgs(struct cgpu_info *avalon8, const struct avalon8_pkg *pkg)
{
int ret;
do {
ret = avalon8_iic_xfer_pkg(avalon8, AVA8_MODULE_BROADCAST, pkg, NULL);
} while (ret != AVA8_SEND_OK);
return 0;
}
static void avalon8_stratum_pkgs(struct cgpu_info *avalon8, struct pool *pool)
{
struct avalon8_info *info = avalon8->device_data;
const int merkle_offset = 36;
struct avalon8_pkg pkg;
int i, a, b;
uint32_t tmp;
unsigned char target[32];
int job_id_len, n2size;
unsigned short crc;
int coinbase_len_posthash, coinbase_len_prehash;
uint8_t coinbase_prehash[32];
uint32_t range, start;
/* Send out the first stratum message STATIC */
applog(LOG_DEBUG, "%s-%d: Pool stratum message STATIC: %d, %d, %d, %d, %d",
avalon8->drv->name, avalon8->device_id,
pool->coinbase_len,
pool->nonce2_offset,
pool->n2size,
merkle_offset,
pool->merkles);
memset(pkg.data, 0, AVA8_P_DATA_LEN);
tmp = be32toh(pool->coinbase_len);
memcpy(pkg.data, &tmp, 4);
tmp = be32toh(pool->nonce2_offset);
memcpy(pkg.data + 4, &tmp, 4);
n2size = pool->n2size >= 4 ? 4 : pool->n2size;
tmp = be32toh(n2size);
memcpy(pkg.data + 8, &tmp, 4);
tmp = be32toh(merkle_offset);
memcpy(pkg.data + 12, &tmp, 4);
tmp = be32toh(pool->merkles);
memcpy(pkg.data + 16, &tmp, 4);
if (pool->n2size == 3)
range = 0xffffff / (total_devices ? total_devices : 1);
else
range = 0xffffffff / (total_devices ? total_devices : 1);
start = range * avalon8->device_id;
tmp = be32toh(start);
memcpy(pkg.data + 20, &tmp, 4);
tmp = be32toh(range);
memcpy(pkg.data + 24, &tmp, 4);
if (info->work_restart) {
info->work_restart = false;
tmp = be32toh(0x1);
memcpy(pkg.data + 28, &tmp, 4);
}
avalon8_init_pkg(&pkg, AVA8_P_STATIC, 1, 1);
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
if (pool->sdiff <= AVA8_DRV_DIFFMAX)
set_target(target, pool->sdiff);
else
set_target(target, AVA8_DRV_DIFFMAX);
memcpy(pkg.data, target, 32);
if (opt_debug) {
char *target_str;
target_str = bin2hex(target, 32);
applog(LOG_DEBUG, "%s-%d: Pool stratum target: %s", avalon8->drv->name, avalon8->device_id, target_str);
free(target_str);
}
avalon8_init_pkg(&pkg, AVA8_P_TARGET, 1, 1);
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
memset(pkg.data, 0, AVA8_P_DATA_LEN);
job_id_len = strlen(pool->swork.job_id);
crc = crc16((unsigned char *)pool->swork.job_id, job_id_len);
applog(LOG_DEBUG, "%s-%d: Pool stratum message JOBS_ID[%04x]: %s",
avalon8->drv->name, avalon8->device_id,
crc, pool->swork.job_id);
tmp = ((crc << 16) | pool->pool_no);
if (info->last_jobid != tmp) {
info->last_jobid = tmp;
pkg.data[0] = (crc & 0xff00) >> 8;
pkg.data[1] = crc & 0xff;
pkg.data[2] = pool->pool_no & 0xff;
pkg.data[3] = (pool->pool_no & 0xff00) >> 8;
avalon8_init_pkg(&pkg, AVA8_P_JOB_ID, 1, 1);
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
}
coinbase_len_prehash = pool->nonce2_offset - (pool->nonce2_offset % SHA256_BLOCK_SIZE);
coinbase_len_posthash = pool->coinbase_len - coinbase_len_prehash;
sha256_prehash(pool->coinbase, coinbase_len_prehash, coinbase_prehash);
a = (coinbase_len_posthash / AVA8_P_DATA_LEN) + 1;
b = coinbase_len_posthash % AVA8_P_DATA_LEN;
memcpy(pkg.data, coinbase_prehash, 32);
avalon8_init_pkg(&pkg, AVA8_P_COINBASE, 1, a + (b ? 1 : 0));
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
applog(LOG_DEBUG, "%s-%d: Pool stratum message modified COINBASE: %d %d",
avalon8->drv->name, avalon8->device_id,
a, b);
for (i = 1; i < a; i++) {
memcpy(pkg.data, pool->coinbase + coinbase_len_prehash + i * 32 - 32, 32);
avalon8_init_pkg(&pkg, AVA8_P_COINBASE, i + 1, a + (b ? 1 : 0));
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
}
if (b) {
memset(pkg.data, 0, AVA8_P_DATA_LEN);
memcpy(pkg.data, pool->coinbase + coinbase_len_prehash + i * 32 - 32, b);
avalon8_init_pkg(&pkg, AVA8_P_COINBASE, i + 1, i + 1);
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
}
b = pool->merkles;
applog(LOG_DEBUG, "%s-%d: Pool stratum message MERKLES: %d", avalon8->drv->name, avalon8->device_id, b);
for (i = 0; i < b; i++) {
memset(pkg.data, 0, AVA8_P_DATA_LEN);
memcpy(pkg.data, pool->swork.merkle_bin[i], 32);
avalon8_init_pkg(&pkg, AVA8_P_MERKLES, i + 1, b);
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
}
applog(LOG_DEBUG, "%s-%d: Pool stratum message HEADER: 4", avalon8->drv->name, avalon8->device_id);
for (i = 0; i < 4; i++) {
memset(pkg.data, 0, AVA8_P_DATA_LEN);
memcpy(pkg.data, pool->header_bin + i * 32, 32);
avalon8_init_pkg(&pkg, AVA8_P_HEADER, i + 1, 4);
if (avalon8_send_bc_pkgs(avalon8, &pkg))
return;
}
if (info->connecter == AVA8_CONNECTER_AUC)
avalon8_auc_getinfo(avalon8);
}
static struct cgpu_info *avalon8_iic_detect(void)
{
int i;
struct avalon8_info *info;
struct cgpu_info *avalon8 = NULL;
struct i2c_ctx *i2c_slave = NULL;
i2c_slave = i2c_slave_open(I2C_BUS, 0);
if (!i2c_slave) {
applog(LOG_ERR, "avalon8 init iic failed\n");
return NULL;
}
i2c_slave->exit(i2c_slave);
i2c_slave = NULL;
avalon8 = cgcalloc(1, sizeof(*avalon8));
avalon8->drv = &avalon8_drv;
avalon8->deven = DEV_ENABLED;
avalon8->threads = 1;
add_cgpu(avalon8);
applog(LOG_INFO, "%s-%d: Found at %s", avalon8->drv->name, avalon8->device_id,
I2C_BUS);
avalon8->device_data = cgcalloc(sizeof(struct avalon8_info), 1);
memset(avalon8->device_data, 0, sizeof(struct avalon8_info));
info = avalon8->device_data;
for (i = 0; i < AVA8_DEFAULT_MODULARS; i++) {
info->enable[i] = false;
info->reboot[i] = false;
info->i2c_slaves[i] = i2c_slave_open(I2C_BUS, i);
if (!info->i2c_slaves[i]) {
applog(LOG_ERR, "avalon8 init i2c slaves failed\n");
free(avalon8->device_data);
avalon8->device_data = NULL;
free(avalon8);
avalon8 = NULL;
return NULL;
}
}
info->connecter = AVA8_CONNECTER_IIC;
return avalon8;
}
static void detect_modules(struct cgpu_info *avalon8);
static struct cgpu_info *avalon8_auc_detect(struct libusb_device *dev, struct usb_find_devices *found)
{
int i, modules = 0;
struct avalon8_info *info;
struct cgpu_info *avalon8 = usb_alloc_cgpu(&avalon8_drv, 1);
char auc_ver[AVA8_AUC_VER_LEN];
if (!usb_init(avalon8, dev, found)) {
applog(LOG_ERR, "avalon8 failed usb_init");
avalon8 = usb_free_cgpu(avalon8);
return NULL;
}
/* avalon8 prefers not to use zero length packets */
avalon8->nozlp = true;
/* We try twice on AUC init */
if (avalon8_auc_init(avalon8, auc_ver) && avalon8_auc_init(avalon8, auc_ver))
return NULL;
applog(LOG_INFO, "%s-%d: Found at %s", avalon8->drv->name, avalon8->device_id,
avalon8->device_path);
avalon8->device_data = cgcalloc(sizeof(struct avalon8_info), 1);
memset(avalon8->device_data, 0, sizeof(struct avalon8_info));
info = avalon8->device_data;
memcpy(info->auc_version, auc_ver, AVA8_AUC_VER_LEN);
info->auc_version[AVA8_AUC_VER_LEN] = '\0';
info->auc_speed = opt_avalon8_aucspeed;
info->auc_xdelay = opt_avalon8_aucxdelay;
for (i = 0; i < AVA8_DEFAULT_MODULARS; i++)
info->enable[i] = 0;
info->connecter = AVA8_CONNECTER_AUC;
detect_modules(avalon8);
for (i = 0; i < AVA8_DEFAULT_MODULARS; i++)
modules += info->enable[i];
if (!modules) {
applog(LOG_INFO, "avalon8 found but no modules initialised");
free(info);
avalon8 = usb_free_cgpu(avalon8);
return NULL;
}
/* We have an avalon8 AUC connected */
avalon8->threads = 1;
add_cgpu(avalon8);
update_usb_stats(avalon8);
return avalon8;
}
static inline void avalon8_detect(bool __maybe_unused hotplug)
{
usb_detect(&avalon8_drv, avalon8_auc_detect);
if (!hotplug && opt_avalon8_iic_detect)
avalon8_iic_detect();
}
static bool avalon8_prepare(struct thr_info *thr)
{
struct cgpu_info *avalon8 = thr->cgpu;
struct avalon8_info *info = avalon8->device_data;
info->last_diff1 = 0;
info->pending_diff1 = 0;
info->last_rej = 0;
info->mm_count = 0;
info->xfer_err_cnt = 0;
info->pool_no = 0;
memset(&(info->firsthash), 0, sizeof(info->firsthash));
cgtime(&(info->last_fan_adj));
cgtime(&info->last_stratum);
cgtime(&info->last_detect);
cglock_init(&info->update_lock);
cglock_init(&info->pool0.data_lock);
cglock_init(&info->pool1.data_lock);
cglock_init(&info->pool2.data_lock);
return true;
}
static int check_module_exist(struct cgpu_info *avalon8, uint8_t mm_dna[AVA8_MM_DNA_LEN])
{
struct avalon8_info *info = avalon8->device_data;
int i;
for (i = 0; i < AVA8_DEFAULT_MODULARS; i++) {
/* last byte is \0 */
if (info->enable[i] && !memcmp(info->mm_dna[i], mm_dna, AVA8_MM_DNA_LEN))
return 1;
}
return 0;
}
static void detect_modules(struct cgpu_info *avalon8)
{
struct avalon8_info *info = avalon8->device_data;
struct avalon8_pkg send_pkg;
struct avalon8_ret ret_pkg;
uint32_t tmp;
int i, j, k, err, rlen;
uint8_t dev_index;
uint8_t rbuf[AVA8_AUC_P_SIZE];
/* Detect new modules here */
for (i = 1; i < AVA8_DEFAULT_MODULARS + 1; i++) {
if (info->enable[i])
continue;
/* Send out detect pkg */
applog(LOG_DEBUG, "%s-%d: AVA8_P_DETECT ID[%d]",
avalon8->drv->name, avalon8->device_id, i);
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
tmp = be32toh(i); /* ID */
memcpy(send_pkg.data + 28, &tmp, 4);
avalon8_init_pkg(&send_pkg, AVA8_P_DETECT, 1, 1);
err = avalon8_iic_xfer_pkg(avalon8, AVA8_MODULE_BROADCAST, &send_pkg, &ret_pkg);
if (err == AVA8_SEND_OK) {
if (decode_pkg(avalon8, &ret_pkg, AVA8_MODULE_BROADCAST)) {
applog(LOG_DEBUG, "%s-%d: Should be AVA8_P_ACKDETECT(%d), but %d",
avalon8->drv->name, avalon8->device_id, AVA8_P_ACKDETECT, ret_pkg.type);
continue;
}
}
if (err != AVA8_SEND_OK) {
applog(LOG_DEBUG, "%s-%d: AVA8_P_DETECT: Failed AUC xfer data with err %d",
avalon8->drv->name, avalon8->device_id, err);
break;
}
applog(LOG_DEBUG, "%s-%d: Module detect ID[%d]: %d",
avalon8->drv->name, avalon8->device_id, i, ret_pkg.type);
if (ret_pkg.type != AVA8_P_ACKDETECT)
break;
if (check_module_exist(avalon8, ret_pkg.data))
continue;
/* Check count of modulars */
if (i == AVA8_DEFAULT_MODULARS) {
applog(LOG_NOTICE, "You have connected more than %d machines. This is discouraged.", (AVA8_DEFAULT_MODULARS - 1));
info->conn_overloaded = true;
break;
} else
info->conn_overloaded = false;
memcpy(info->mm_version[i], ret_pkg.data + AVA8_MM_DNA_LEN, AVA8_MM_VER_LEN);
info->mm_version[i][AVA8_MM_VER_LEN] = '\0';
for (dev_index = 0; dev_index < (sizeof(avalon8_dev_table) / sizeof(avalon8_dev_table[0])); dev_index++) {
if (!strncmp((char *)&(info->mm_version[i]), (char *)(avalon8_dev_table[dev_index].dev_id_str), 3)) {
info->mod_type[i] = avalon8_dev_table[dev_index].mod_type;
info->miner_count[i] = avalon8_dev_table[dev_index].miner_count;
info->asic_count[i] = avalon8_dev_table[dev_index].asic_count;
info->vin_adc_ratio[i] = avalon8_dev_table[dev_index].vin_adc_ratio;
info->vout_adc_ratio[i] = avalon8_dev_table[dev_index].vout_adc_ratio;
break;
}
}
if (dev_index == (sizeof(avalon8_dev_table) / sizeof(avalon8_dev_table[0]))) {
applog(LOG_NOTICE, "%s-%d: The modular version %s cann't be support",
avalon8->drv->name, avalon8->device_id, info->mm_version[i]);
break;
}
info->enable[i] = 1;
cgtime(&info->elapsed[i]);
memcpy(info->mm_dna[i], ret_pkg.data, AVA8_MM_DNA_LEN);
memcpy(&tmp, ret_pkg.data + AVA8_MM_DNA_LEN + AVA8_MM_VER_LEN, 4);
tmp = be32toh(tmp);
info->total_asics[i] = tmp;
info->temp_overheat[i] = AVA8_DEFAULT_TEMP_OVERHEAT;
info->temp_target[i] = opt_avalon8_temp_target;
info->fan_pct[i] = opt_avalon8_fan_min;
for (j = 0; j < info->miner_count[i]; j++) {
if (opt_avalon8_voltage_level == AVA8_INVALID_VOLTAGE_LEVEL)
info->set_voltage_level[i][j] = avalon8_dev_table[dev_index].set_voltage_level;
else
info->set_voltage_level[i][j] = opt_avalon8_voltage_level;
info->get_voltage[i][j] = 0;
info->get_vin[i][j] = 0;
for (k = 0; k < info->asic_count[i]; k++)
info->temp[i][j][k] = -273;
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++)
info->set_frequency[i][j][k] = avalon8_dev_table[dev_index].set_freq[k];
if (AVA8_INVALID_ASIC_OTP == opt_avalon8_asic_otp)
info->set_asic_otp[i][j] = 0; /* default asic: 0 */
else
info->set_asic_otp[i][j] = opt_avalon8_asic_otp;
}
info->freq_mode[i] = AVA8_FREQ_INIT_MODE;
memset(info->get_pll[i], 0, sizeof(uint32_t) * info->miner_count[i] * AVA8_DEFAULT_PLL_CNT);
info->led_indicator[i] = 0;
info->cutoff[i] = 0;
info->fan_cpm[i] = 0;
info->temp_mm[i] = -273;
info->local_works[i] = 0;
info->hw_works[i] = 0;
/*PID controller*/
info->pid_u[i] = opt_avalon8_fan_min;
info->pid_p[i] = opt_avalon8_pid_p;
info->pid_i[i] = opt_avalon8_pid_i;
info->pid_d[i] = opt_avalon8_pid_d;
info->pid_e[i][0] = 0;
info->pid_e[i][1] = 0;
info->pid_e[i][2] = 0;
info->pid_0[i] = 0;
for (j = 0; j < info->miner_count[i]; j++) {
memset(info->chip_matching_work[i][j], 0, sizeof(uint64_t) * info->asic_count[i]);
info->local_works_i[i][j] = 0;
info->hw_works_i[i][j] = 0;
info->error_code[i][j] = 0;
info->error_crc[i][j] = 0;
}
info->error_code[i][j] = 0;
info->error_polling_cnt[i] = 0;
info->power_good[i] = 0;
memset(info->pmu_version[i], 0, sizeof(char) * 5 * AVA8_DEFAULT_PMU_CNT);
info->diff1[i] = 0;
applog(LOG_NOTICE, "%s-%d: New module detected! ID[%d-%x]",
avalon8->drv->name, avalon8->device_id, i, info->mm_dna[i][AVA8_MM_DNA_LEN - 1]);
/* Tell MM, it has been detected */
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
memcpy(send_pkg.data, info->mm_dna[i], AVA8_MM_DNA_LEN);
avalon8_init_pkg(&send_pkg, AVA8_P_SYNC, 1, 1);
avalon8_iic_xfer_pkg(avalon8, i, &send_pkg, &ret_pkg);
/* Keep the usb buffer is empty */
usb_buffer_clear(avalon8);
usb_read(avalon8, (char *)rbuf, AVA8_AUC_P_SIZE, &rlen, C_AVA8_READ);
}
}
static void detach_module(struct cgpu_info *avalon8, int addr)
{
struct avalon8_info *info = avalon8->device_data;
info->enable[addr] = 0;
applog(LOG_NOTICE, "%s-%d: Module detached! ID[%d]",
avalon8->drv->name, avalon8->device_id, addr);
}
static int polling(struct cgpu_info *avalon8)
{
struct avalon8_info *info = avalon8->device_data;
struct avalon8_pkg send_pkg;
struct avalon8_ret ar;
int i, tmp, ret, decode_err = 0;
struct timeval current_fan;
int do_adjust_fan = 0;
uint32_t fan_pwm;
double device_tdiff;
cgtime(&current_fan);
device_tdiff = tdiff(&current_fan, &(info->last_fan_adj));
if (device_tdiff > 2.0 || device_tdiff < 0) {
cgtime(&info->last_fan_adj);
do_adjust_fan = 1;
}
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (!info->enable[i])
continue;
cgsleep_ms(opt_avalon8_polling_delay);
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
/* Red LED */
tmp = be32toh(info->led_indicator[i]);
memcpy(send_pkg.data, &tmp, 4);
/* Adjust fan every 2 seconds*/
if (do_adjust_fan) {
fan_pwm = adjust_fan(info, i);
fan_pwm |= 0x80000000;
tmp = be32toh(fan_pwm);
memcpy(send_pkg.data + 4, &tmp, 4);
}
if (info->reboot[i]) {
info->reboot[i] = false;
send_pkg.data[8] = 0x1;
}
avalon8_init_pkg(&send_pkg, AVA8_P_POLLING, 1, 1);
ret = avalon8_iic_xfer_pkg(avalon8, i, &send_pkg, &ar);
if (ret == AVA8_SEND_OK)
decode_err = decode_pkg(avalon8, &ar, i);
if (ret != AVA8_SEND_OK || decode_err) {
info->error_polling_cnt[i]++;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
avalon8_init_pkg(&send_pkg, AVA8_P_RSTMMTX, 1, 1);
avalon8_iic_xfer_pkg(avalon8, i, &send_pkg, NULL);
if (info->error_polling_cnt[i] >= 10)
detach_module(avalon8, i);
}
if (ret == AVA8_SEND_OK && !decode_err) {
info->error_polling_cnt[i] = 0;
if ((ar.opt == AVA8_P_STATUS) &&
(info->mm_dna[i][AVA8_MM_DNA_LEN - 1] != ar.opt)) {
applog(LOG_ERR, "%s-%d-%d: Dup address found %d-%d",
avalon8->drv->name, avalon8->device_id, i,
info->mm_dna[i][AVA8_MM_DNA_LEN - 1], ar.opt);
hexdump((uint8_t *)&ar, sizeof(ar));
detach_module(avalon8, i);
}
}
}
return 0;
}
static void copy_pool_stratum(struct pool *pool_stratum, struct pool *pool)
{
int i;
int merkles = pool->merkles, job_id_len;
size_t coinbase_len = pool->coinbase_len;
unsigned short crc;
if (!pool->swork.job_id)
return;
if (pool_stratum->swork.job_id) {
job_id_len = strlen(pool->swork.job_id);
crc = crc16((unsigned char *)pool->swork.job_id, job_id_len);
job_id_len = strlen(pool_stratum->swork.job_id);
if (crc16((unsigned char *)pool_stratum->swork.job_id, job_id_len) == crc)
return;
}
cg_wlock(&pool_stratum->data_lock);
free(pool_stratum->swork.job_id);
free(pool_stratum->nonce1);
free(pool_stratum->coinbase);
pool_stratum->coinbase = cgcalloc(coinbase_len, 1);
memcpy(pool_stratum->coinbase, pool->coinbase, coinbase_len);
for (i = 0; i < pool_stratum->merkles; i++)
free(pool_stratum->swork.merkle_bin[i]);
if (merkles) {
pool_stratum->swork.merkle_bin = cgrealloc(pool_stratum->swork.merkle_bin,
sizeof(char *) * merkles + 1);
for (i = 0; i < merkles; i++) {
pool_stratum->swork.merkle_bin[i] = cgmalloc(32);
memcpy(pool_stratum->swork.merkle_bin[i], pool->swork.merkle_bin[i], 32);
}
}
pool_stratum->sdiff = pool->sdiff;
pool_stratum->coinbase_len = pool->coinbase_len;
pool_stratum->nonce2_offset = pool->nonce2_offset;
pool_stratum->n2size = pool->n2size;
pool_stratum->merkles = pool->merkles;
pool_stratum->swork.job_id = strdup(pool->swork.job_id);
pool_stratum->nonce1 = strdup(pool->nonce1);
memcpy(pool_stratum->ntime, pool->ntime, sizeof(pool_stratum->ntime));
memcpy(pool_stratum->header_bin, pool->header_bin, sizeof(pool_stratum->header_bin));
cg_wunlock(&pool_stratum->data_lock);
}
static void avalon8_init_setting(struct cgpu_info *avalon8, int addr)
{
struct avalon8_pkg send_pkg;
uint32_t tmp;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
tmp = be32toh(opt_avalon8_freq_sel);
memcpy(send_pkg.data + 4, &tmp, 4);
/*
* set flags:
* 0: ss switch
* 1: nonce check
* 2: roll enable
*/
tmp = 1;
if (!opt_avalon8_smart_speed)
tmp = 0;
tmp |= (opt_avalon8_nonce_check << 1);
tmp |= (opt_avalon8_roll_enable << 2);
send_pkg.data[8] = tmp & 0xff;
send_pkg.data[9] = opt_avalon8_nonce_mask & 0xff;
tmp = be32toh(opt_avalon8_mux_l2h);
memcpy(send_pkg.data + 10, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set mux l2h %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_mux_l2h);
tmp = be32toh(opt_avalon8_mux_h2l);
memcpy(send_pkg.data + 14, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set mux h2l %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_mux_h2l);
tmp = be32toh(opt_avalon8_h2ltime0_spd);
memcpy(send_pkg.data + 18, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set h2ltime0 spd %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_h2ltime0_spd);
tmp = be32toh(opt_avalon8_spdlow);
memcpy(send_pkg.data + 22, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set spdlow %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_spdlow);
tmp = be32toh(opt_avalon8_spdhigh);
memcpy(send_pkg.data + 26, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set spdhigh %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_spdhigh);
/* Package the data */
avalon8_init_pkg(&send_pkg, AVA8_P_SET, 1, 1);
if (addr == AVA8_MODULE_BROADCAST)
avalon8_send_bc_pkgs(avalon8, &send_pkg);
else
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_set_voltage_level(struct cgpu_info *avalon8, int addr, unsigned int voltage[])
{
struct avalon8_info *info = avalon8->device_data;
struct avalon8_pkg send_pkg;
uint32_t tmp;
uint8_t i;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
/* NOTE: miner_count should <= 8 */
for (i = 0; i < info->miner_count[addr]; i++) {
tmp = be32toh(encode_voltage(voltage[i] +
opt_avalon8_voltage_level_offset));
memcpy(send_pkg.data + i * 4, &tmp, 4);
}
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set voltage miner %d, (%d-%d)",
avalon8->drv->name, avalon8->device_id, addr,
i, voltage[0], voltage[info->miner_count[addr] - 1]);
/* Package the data */
avalon8_init_pkg(&send_pkg, AVA8_P_SET_VOLT, 1, 1);
if (addr == AVA8_MODULE_BROADCAST)
avalon8_send_bc_pkgs(avalon8, &send_pkg);
else
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_set_asic_otp(struct cgpu_info *avalon8, int addr, unsigned int asic[])
{
struct avalon8_info *info = avalon8->device_data;
struct avalon8_pkg send_pkg;
uint32_t tmp, core_sel;
uint8_t i;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
/* NOTE: miner_count should <= 8 */
for (i = 0; i < info->miner_count[addr]; i++) {
if (asic[i] < 0)
asic[i] = 0;
else if (asic[i] > (AVA8_DEFAULT_ASIC_MAX -1))
asic[i] = AVA8_DEFAULT_ASIC_MAX - 1;
tmp = be32toh(asic[i]);
memcpy(send_pkg.data + i * 4, &tmp, 4);
}
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set asic for otp reading %d, (%d-%d)",
avalon8->drv->name, avalon8->device_id, addr,
i, asic[0], asic[info->miner_count[addr] - 1]);
/* Package the data */
avalon8_init_pkg(&send_pkg, AVA8_P_SET_ASIC_OTP, 1, 1);
if (addr == AVA8_MODULE_BROADCAST)
avalon8_send_bc_pkgs(avalon8, &send_pkg);
else
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_set_freq(struct cgpu_info *avalon8, int addr, int miner_id, unsigned int freq[])
{
struct avalon8_info *info = avalon8->device_data;
struct avalon8_pkg send_pkg;
uint32_t tmp, f;
uint8_t i;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
for (i = 0; i < AVA8_DEFAULT_PLL_CNT; i++) {
tmp = be32toh(api_get_cpm(freq[i]));
memcpy(send_pkg.data + i * 4, &tmp, 4);
}
f = freq[0];
for (i = 1; i < AVA8_DEFAULT_PLL_CNT; i++)
f = f > freq[i] ? f : freq[i];
f = f ? f : 1;
/* TODO: adjust it according to frequency */
tmp = 100;
tmp = be32toh(tmp);
memcpy(send_pkg.data + AVA8_DEFAULT_PLL_CNT * 4, &tmp, 4);
tmp = AVA8_ASIC_TIMEOUT_CONST / f * 83 / 100;
tmp = be32toh(tmp);
memcpy(send_pkg.data + AVA8_DEFAULT_PLL_CNT * 4 + 4, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set freq miner %x-%x",
avalon8->drv->name, avalon8->device_id, addr,
miner_id, be32toh(tmp));
/* Package the data */
avalon8_init_pkg(&send_pkg, AVA8_P_SET_PLL, miner_id + 1, info->miner_count[addr]);
if (addr == AVA8_MODULE_BROADCAST)
avalon8_send_bc_pkgs(avalon8, &send_pkg);
else
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_set_factory_info(struct cgpu_info *avalon8, int addr, uint8_t value[])
{
struct avalon8_pkg send_pkg;
uint8_t i;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
for (i = 0; i < AVA8_DEFAULT_FACTORY_INFO_CNT; i++)
send_pkg.data[i] = value[i];
/* Package the data */
avalon8_init_pkg(&send_pkg, AVA8_P_SET_FAC, 1, 1);
if (addr == AVA8_MODULE_BROADCAST)
avalon8_send_bc_pkgs(avalon8, &send_pkg);
else
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_set_overclocking_info(struct cgpu_info *avalon8, int addr, uint8_t value[])
{
struct avalon8_pkg send_pkg;
uint8_t i;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
for (i = 0; i < AVA8_DEFAULT_OVERCLOCKING_CNT; i++)
send_pkg.data[i] = value[i];
/* Package the data */
avalon8_init_pkg(&send_pkg, AVA8_P_SET_OC, 1, 1);
if (addr == AVA8_MODULE_BROADCAST)
avalon8_send_bc_pkgs(avalon8, &send_pkg);
else
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_set_ss_param(struct cgpu_info *avalon8, int addr)
{
struct avalon8_pkg send_pkg;
uint32_t tmp;
if (!opt_avalon8_smart_speed)
return;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
tmp = be32toh(opt_avalon8_th_pass);
memcpy(send_pkg.data, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set th pass %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_th_pass);
tmp = be32toh(opt_avalon8_th_fail);
memcpy(send_pkg.data + 4, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set th fail %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_th_fail);
tmp = be32toh(opt_avalon8_th_init);
memcpy(send_pkg.data + 8, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set th init %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_th_init);
tmp = be32toh(opt_avalon8_th_ms);
memcpy(send_pkg.data + 12, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set th ms %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_th_ms);
tmp = be32toh(opt_avalon8_th_timeout);
memcpy(send_pkg.data + 16, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set th timeout %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_th_timeout);
tmp = be32toh(opt_avalon8_th_add);
memcpy(send_pkg.data + 20, &tmp, 4);
applog(LOG_DEBUG, "%s-%d-%d: avalon8 set th add %u",
avalon8->drv->name, avalon8->device_id, addr,
opt_avalon8_th_add);
/* Package the data */
avalon8_init_pkg(&send_pkg, AVA8_P_SET_SS, 1, 1);
if (addr == AVA8_MODULE_BROADCAST)
avalon8_send_bc_pkgs(avalon8, &send_pkg);
else
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_stratum_finish(struct cgpu_info *avalon8)
{
struct avalon8_pkg send_pkg;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
avalon8_init_pkg(&send_pkg, AVA8_P_JOB_FIN, 1, 1);
avalon8_send_bc_pkgs(avalon8, &send_pkg);
}
static void avalon8_set_finish(struct cgpu_info *avalon8, int addr)
{
struct avalon8_pkg send_pkg;
memset(send_pkg.data, 0, AVA8_P_DATA_LEN);
avalon8_init_pkg(&send_pkg, AVA8_P_SET_FIN, 1, 1);
avalon8_iic_xfer_pkg(avalon8, addr, &send_pkg, NULL);
}
static void avalon8_sswork_update(struct cgpu_info *avalon8)
{
struct avalon8_info *info = avalon8->device_data;
struct thr_info *thr = avalon8->thr[0];
struct pool *pool;
int coinbase_len_posthash, coinbase_len_prehash;
cgtime(&info->last_stratum);
/*
* NOTE: We need mark work_restart to private information,
* So that it cann't reset by hash_driver_work
*/
if (thr->work_restart)
info->work_restart = thr->work_restart;
applog(LOG_NOTICE, "%s-%d: New stratum: restart: %d, update: %d",
avalon8->drv->name, avalon8->device_id,
thr->work_restart, thr->work_update);
/* Step 1: MM protocol check */
pool = current_pool();
if (!pool->has_stratum)
quit(1, "%s-%d: MM has to use stratum pools", avalon8->drv->name, avalon8->device_id);
coinbase_len_prehash = pool->nonce2_offset - (pool->nonce2_offset % SHA256_BLOCK_SIZE);
coinbase_len_posthash = pool->coinbase_len - coinbase_len_prehash;
if (coinbase_len_posthash + SHA256_BLOCK_SIZE > AVA8_P_COINBASE_SIZE) {
applog(LOG_ERR, "%s-%d: MM pool modified coinbase length(%d) is more than %d",
avalon8->drv->name, avalon8->device_id,
coinbase_len_posthash + SHA256_BLOCK_SIZE, AVA8_P_COINBASE_SIZE);
return;
}
if (pool->merkles > AVA8_P_MERKLES_COUNT) {
applog(LOG_ERR, "%s-%d: MM merkles has to be less then %d", avalon8->drv->name, avalon8->device_id, AVA8_P_MERKLES_COUNT);
return;
}
if (pool->n2size < 3) {
applog(LOG_ERR, "%s-%d: MM nonce2 size has to be >= 3 (%d)", avalon8->drv->name, avalon8->device_id, pool->n2size);
return;
}
cg_wlock(&info->update_lock);
/* Step 2: Send out stratum pkgs */
cg_rlock(&pool->data_lock);
info->pool_no = pool->pool_no;
copy_pool_stratum(&info->pool2, &info->pool1);
copy_pool_stratum(&info->pool1, &info->pool0);
copy_pool_stratum(&info->pool0, pool);
avalon8_stratum_pkgs(avalon8, pool);
cg_runlock(&pool->data_lock);
/* Step 3: Send out finish pkg */
avalon8_stratum_finish(avalon8);
cg_wunlock(&info->update_lock);
}
static int64_t avalon8_scanhash(struct thr_info *thr)
{
struct cgpu_info *avalon8 = thr->cgpu;
struct avalon8_info *info = avalon8->device_data;
struct timeval current;
int i, j, k, count = 0;
int temp_max;
int64_t ret;
bool update_settings = false;
if ((info->connecter == AVA8_CONNECTER_AUC) &&
(unlikely(avalon8->usbinfo.nodev))) {
applog(LOG_ERR, "%s-%d: Device disappeared, shutting down thread",
avalon8->drv->name, avalon8->device_id);
return -1;
}
/* Step 1: Stop polling and detach the device if there is no stratum in 3 minutes, network is down */
cgtime(&current);
if (tdiff(&current, &(info->last_stratum)) > 180.0) {
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (!info->enable[i])
continue;
detach_module(avalon8, i);
}
info->mm_count = 0;
return 0;
}
/* Step 2: Try to detect new modules */
if ((tdiff(&current, &(info->last_detect)) > AVA8_MODULE_DETECT_INTERVAL) ||
!info->mm_count) {
cgtime(&info->last_detect);
detect_modules(avalon8);
}
/* Step 3: ASIC configrations (voltage and frequency) */
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (!info->enable[i])
continue;
update_settings = false;
/* Check temperautre */
temp_max = get_temp_max(info, i);
/* Enter too hot */
if (temp_max >= info->temp_overheat[i])
info->cutoff[i] = 1;
/* Exit too hot */
if (info->cutoff[i] && (temp_max <= (info->temp_overheat[i] - 10)))
info->cutoff[i] = 0;
switch (info->freq_mode[i]) {
case AVA8_FREQ_INIT_MODE:
update_settings = true;
/* Make sure to send configuration first */
thr->work_update = false;
for (j = 0; j < info->miner_count[i]; j++) {
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++) {
if (opt_avalon8_freq[k] != AVA8_DEFAULT_FREQUENCY)
info->set_frequency[i][j][k] = opt_avalon8_freq[k];
}
}
if (!strncmp((char *)&(info->mm_version[i]), "851", 3)) {
if (opt_avalon8_spdlow == AVA8_INVALID_SPDLOW)
opt_avalon8_spdlow = AVA851_DEFAULT_SPDLOW;
if (opt_avalon8_nonce_mask == AVA8_INVALID_NONCE_MASK)
opt_avalon8_nonce_mask = AVA851_DEFAULT_NONCE_MASK;
} else if (!strncmp((char *)&(info->mm_version[i]), "831", 3)) {
if (opt_avalon8_spdlow == AVA8_INVALID_SPDLOW)
opt_avalon8_spdlow = AVA831_DEFAULT_SPDLOW;
if (opt_avalon8_nonce_mask == AVA8_INVALID_NONCE_MASK)
opt_avalon8_nonce_mask = AVA831_DEFAULT_NONCE_MASK;
} else {
if (opt_avalon8_spdlow == AVA8_INVALID_SPDLOW)
opt_avalon8_spdlow = AVA8_DEFAULT_SPDLOW;
if (opt_avalon8_nonce_mask == AVA8_INVALID_NONCE_MASK)
opt_avalon8_nonce_mask = AVA8_DEFAULT_NONCE_MASK;
}
avalon8_init_setting(avalon8, i);
info->freq_mode[i] = AVA8_FREQ_PLLADJ_MODE;
break;
case AVA8_FREQ_PLLADJ_MODE:
if (opt_avalon8_smart_speed == AVA8_DEFAULT_SMARTSPEED_OFF)
break;
/* AVA8_DEFAULT_SMARTSPEED_MODE1: auto speed by A3210 chips */
break;
default:
applog(LOG_ERR, "%s-%d-%d: Invalid frequency mode %d",
avalon8->drv->name, avalon8->device_id, i, info->freq_mode[i]);
break;
}
if (update_settings) {
cg_wlock(&info->update_lock);
avalon8_set_voltage_level(avalon8, i, info->set_voltage_level[i]);
avalon8_set_asic_otp(avalon8, i, info->set_asic_otp[i]);
for (j = 0; j < info->miner_count[i]; j++)
avalon8_set_freq(avalon8, i, j, info->set_frequency[i][j]);
if (opt_avalon8_smart_speed) {
if (!strncmp((char *)&(info->mm_version[i]), "851", 3)) {
if (opt_avalon8_th_pass == AVA8_INVALID_TH_PASS)
opt_avalon8_th_pass = AVA851_DEFAULT_TH_PASS;
if (opt_avalon8_th_fail == AVA8_INVALID_TH_FAIL)
opt_avalon8_th_fail = AVA851_DEFAULT_TH_FAIL;
if (opt_avalon8_th_timeout == AVA8_INVALID_TH_TIMEOUT)
opt_avalon8_th_timeout = AVA851_DEFAULT_TH_TIMEOUT;
} else if (!strncmp((char *)&(info->mm_version[i]), "831", 3)) {
if (opt_avalon8_th_pass == AVA8_INVALID_TH_PASS)
opt_avalon8_th_pass = AVA831_DEFAULT_TH_PASS;
if (opt_avalon8_th_fail == AVA8_INVALID_TH_FAIL)
opt_avalon8_th_fail = AVA831_DEFAULT_TH_FAIL;
if (opt_avalon8_th_timeout == AVA8_INVALID_TH_TIMEOUT)
opt_avalon8_th_timeout = AVA831_DEFAULT_TH_TIMEOUT;
} else {
if (opt_avalon8_th_pass == AVA8_INVALID_TH_PASS)
opt_avalon8_th_pass = AVA8_DEFAULT_TH_PASS;
if (opt_avalon8_th_fail == AVA8_INVALID_TH_FAIL)
opt_avalon8_th_fail = AVA8_DEFAULT_TH_FAIL;
if (opt_avalon8_th_timeout == AVA8_INVALID_TH_TIMEOUT)
opt_avalon8_th_timeout = AVA8_DEFAULT_TH_TIMEOUT;
}
avalon8_set_ss_param(avalon8, i);
}
avalon8_set_finish(avalon8, i);
cg_wunlock(&info->update_lock);
}
}
/* Step 4: Polling */
cg_rlock(&info->update_lock);
polling(avalon8);
cg_runlock(&info->update_lock);
/* Step 5: Calculate mm count */
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (info->enable[i])
count++;
}
info->mm_count = count;
/* Step 6: Calculate hashes. Use the diff1 value which is scaled by
* device diff and is usually lower than pool diff which will give a
* more stable result, but remove diff rejected shares to more closely
* approximate diff accepted values. */
info->pending_diff1 += avalon8->diff1 - info->last_diff1;
info->last_diff1 = avalon8->diff1;
info->pending_diff1 -= avalon8->diff_rejected - info->last_rej;
info->last_rej = avalon8->diff_rejected;
if (info->pending_diff1 && !info->firsthash.tv_sec) {
cgtime(&info->firsthash);
copy_time(&(avalon8->dev_start_tv), &(info->firsthash));
}
if (info->pending_diff1 <= 0)
ret = 0;
else {
ret = info->pending_diff1;
info->pending_diff1 = 0;
}
return ret * 0xffffffffull;
}
static float avalon8_hash_cal(struct cgpu_info *avalon8, int modular_id)
{
struct avalon8_info *info = avalon8->device_data;
uint32_t tmp_freq[AVA8_DEFAULT_PLL_CNT];
unsigned int i, j, k;
float mhsmm;
mhsmm = 0;
if (!strncmp((char *)&(info->mm_version[modular_id]), "851", 3)) {
for (i = 0; i < info->miner_count[modular_id]; i++) {
for (j = 0; j < info->asic_count[modular_id]; j++) {
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++)
mhsmm += (info->get_asic[modular_id][i][j][2 + k] * info->get_frequency[modular_id][i][j][k]);
}
}
} else {
for (i = 0; i < info->miner_count[modular_id]; i++) {
for (j = 0; j < AVA8_DEFAULT_PLL_CNT; j++)
tmp_freq[j] = info->set_frequency[modular_id][i][j];
for (j = 0; j < AVA8_DEFAULT_PLL_CNT; j++)
mhsmm += (info->get_pll[modular_id][i][j] * tmp_freq[j]);
}
}
return mhsmm;
}
#define STATBUFLEN_WITHOUT_DBG (6 * 1024)
#define STATBUFLEN_WITH_DBG (6 * 7 * 1024)
static struct api_data *avalon8_api_stats(struct cgpu_info *avalon8)
{
struct api_data *root = NULL;
struct avalon8_info *info = avalon8->device_data;
int i, j, k, m;
char buf[256];
char *statbuf = NULL;
struct timeval current;
float mhsmm, auc_temp = 0.0;
cgtime(&current);
if (opt_debug)
statbuf = cgcalloc(STATBUFLEN_WITH_DBG, 1);
else
statbuf = cgcalloc(STATBUFLEN_WITHOUT_DBG, 1);
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (!info->enable[i])
continue;
sprintf(buf, "Ver[%s]", info->mm_version[i]);
strcpy(statbuf, buf);
sprintf(buf, " DNA[%02x%02x%02x%02x%02x%02x%02x%02x]",
info->mm_dna[i][0],
info->mm_dna[i][1],
info->mm_dna[i][2],
info->mm_dna[i][3],
info->mm_dna[i][4],
info->mm_dna[i][5],
info->mm_dna[i][6],
info->mm_dna[i][7]);
strcat(statbuf, buf);
sprintf(buf, " Elapsed[%.0f]", tdiff(&current, &(info->elapsed[i])));
strcat(statbuf, buf);
strcat(statbuf, " MW[");
info->local_works[i] = 0;
for (j = 0; j < info->miner_count[i]; j++) {
info->local_works[i] += info->local_works_i[i][j];
sprintf(buf, "%"PRIu64" ", info->local_works_i[i][j]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
sprintf(buf, " LW[%"PRIu64"]", info->local_works[i]);
strcat(statbuf, buf);
strcat(statbuf, " MH[");
info->hw_works[i] = 0;
for (j = 0; j < info->miner_count[i]; j++) {
info->hw_works[i] += info->hw_works_i[i][j];
sprintf(buf, "%"PRIu64" ", info->hw_works_i[i][j]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
sprintf(buf, " HW[%"PRIu64"]", info->hw_works[i]);
strcat(statbuf, buf);
if (!strncmp((char *)&(info->mm_version[i]), "851", 3)) {
double a, b, dh;
a = 0;
b = 0;
for (j = 0; j < info->miner_count[i]; j++) {
for (k = 0; k < info->asic_count[i]; k++) {
a += info->get_asic[i][j][k][0];
b += info->get_asic[i][j][k][1];
}
}
dh = b ? (b / (a + b)) * 100 : 0;
sprintf(buf, " DH[%.3f%%]", dh);
strcat(statbuf, buf);
}
sprintf(buf, " Temp[%d]", info->temp_mm[i]);
strcat(statbuf, buf);
sprintf(buf, " TMax[%d]", get_temp_max(info, i));
strcat(statbuf, buf);
sprintf(buf, " Fan[%d]", info->fan_cpm[i]);
strcat(statbuf, buf);
sprintf(buf, " FanR[%d%%]", info->fan_pct[i]);
strcat(statbuf, buf);
sprintf(buf, " Vi[");
strcat(statbuf, buf);
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, "%d ", info->get_vin[i][j]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
sprintf(buf, " Vo[");
strcat(statbuf, buf);
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, "%d ", info->get_voltage[i][j]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
if (opt_debug) {
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " PLL%d[", j);
strcat(statbuf, buf);
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++) {
sprintf(buf, "%d ", info->get_pll[i][j][k]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
}
}
mhsmm = avalon8_hash_cal(avalon8, i);
sprintf(buf, " GHSmm[%.2f] WU[%.2f] Freq[%.2f]", (float)mhsmm / 1000,
info->diff1[i] / tdiff(&current, &(info->elapsed[i])) * 60.0,
(float)mhsmm / (info->asic_count[i] * info->miner_count[i] * 172));
strcat(statbuf, buf);
sprintf(buf, " PG[%d]", info->power_good[i]);
strcat(statbuf, buf);
sprintf(buf, " Led[%d]", info->led_indicator[i]);
strcat(statbuf, buf);
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " MW%d[", j);
strcat(statbuf, buf);
for (k = 0; k < info->asic_count[i]; k++) {
sprintf(buf, "%"PRIu64" ", info->chip_matching_work[i][j][k]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
}
sprintf(buf, " TA[%d]", info->total_asics[i]);
strcat(statbuf, buf);
strcat(statbuf, " ECHU[");
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, "%d ", info->error_code[i][j]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
sprintf(buf, " ECMM[%d]", info->error_code[i][j]);
strcat(statbuf, buf);
if (opt_debug) {
sprintf(buf, " FAC0[%d]", info->factory_info[0]);
strcat(statbuf, buf);
sprintf(buf, " OC[%d]", info->overclocking_info[0]);
strcat(statbuf, buf);
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " SF%d[", j);
strcat(statbuf, buf);
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++) {
sprintf(buf, "%d ", info->set_frequency[i][j][k]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
}
strcat(statbuf, " PMUV[");
for (j = 0; j < AVA8_DEFAULT_PMU_CNT; j++) {
sprintf(buf, "%s ", info->pmu_version[i][j]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
if (!strncmp((char *)&(info->mm_version[i]), "851", 3)) {
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " PVT_T%d[", j);
strcat(statbuf, buf);
for (k = 0; k < info->asic_count[i]; k++) {
sprintf(buf, "%3d ", info->temp[i][j][k]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
statbuf[strlen(statbuf)] = '\0';
}
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " PVT_V%d[", j);
strcat(statbuf, buf);
for (k = 0; k < info->asic_count[i]; k++) {
sprintf(buf, "%d ", info->core_volt[i][j][k][0]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
statbuf[strlen(statbuf)] = '\0';
}
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " ERATIO%d[", j);
strcat(statbuf, buf);
for (k = 0; k < info->asic_count[i]; k++) {
if (info->get_asic[i][j][k][0])
sprintf(buf, "%6.2f%% ", (double)(info->get_asic[i][j][k][1] * 100.0 / (info->get_asic[i][j][k][0] + info->get_asic[i][j][k][1])));
else
sprintf(buf, "%6.2f%% ", 0.0);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
}
int l;
/* i: modular, j: miner, k:asic, l:value */
for (l = 0; l < 2; l++) {
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " C_%02d_%02d[", j, l);
strcat(statbuf, buf);
for (k = 0; k < info->asic_count[i]; k++) {
sprintf(buf, "%7d ", info->get_asic[i][j][k][l]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
}
}
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " GHSmm%02d[", j);
strcat(statbuf, buf);
for (k = 0; k < info->asic_count[i]; k++) {
mhsmm = 0;
for (l = 2; l < 6; l++) {
if (!strncmp((char *)&(info->mm_version[i]), "851", 3))
mhsmm += (info->get_asic[i][j][k][l] * info->get_frequency[i][j][k][l - 2]);
else
mhsmm += (info->get_asic[i][j][k][l] * info->set_frequency[i][j][l - 2]);
}
sprintf(buf, "%7.2f ", mhsmm / 1000);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
}
for (k = 0; k < info->miner_count[i]; k++) {
sprintf(buf, " CINFO%02d[", k);
strcat(statbuf, buf);
for (m = 0; m < 23; m++) {
sprintf(buf, "%02x", info->otp_info[i][k][m]);
strcat(statbuf, buf);
}
sprintf(buf, "]");
strcat(statbuf, buf);
}
} else {
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, " PVT_T%d[", j);
strcat(statbuf, buf);
for (k = 0; k < info->asic_count[i]; k++) {
sprintf(buf, "%d ", info->temp[i][j][k]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
statbuf[strlen(statbuf)] = '\0';
}
for (j = 0; j < info->miner_count[i]; j++) {
for (k = 0; k < info->asic_count[i]; k++) {
sprintf(buf, " PVT_V%d_%d[", j, k);
strcat(statbuf, buf);
for (m = 0; m < AVA8_DEFAULT_CORE_VOLT_CNT; m++) {
sprintf(buf, "%d ", info->core_volt[i][j][k][m]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
statbuf[strlen(statbuf)] = '\0';
}
}
}
}
sprintf(buf, " FM[%d]", info->freq_mode[i]);
strcat(statbuf, buf);
strcat(statbuf, " CRC[");
for (j = 0; j < info->miner_count[i]; j++) {
sprintf(buf, "%d ", info->error_crc[i][j]);
strcat(statbuf, buf);
}
statbuf[strlen(statbuf) - 1] = ']';
sprintf(buf, "MM ID%d", i);
root = api_add_string(root, buf, statbuf, true);
}
free(statbuf);
root = api_add_int(root, "MM Count", &(info->mm_count), true);
root = api_add_int(root, "Smart Speed", &opt_avalon8_smart_speed, true);
if (info->connecter == AVA8_CONNECTER_IIC)
root = api_add_string(root, "Connecter", "IIC", true);
if (info->connecter == AVA8_CONNECTER_AUC) {
root = api_add_string(root, "Connecter", "AUC", true);
root = api_add_string(root, "AUC VER", info->auc_version, false);
root = api_add_int(root, "AUC I2C Speed", &(info->auc_speed), true);
root = api_add_int(root, "AUC I2C XDelay", &(info->auc_xdelay), true);
root = api_add_int(root, "AUC Sensor", &(info->auc_sensor), true);
auc_temp = decode_auc_temp(info->auc_sensor);
root = api_add_temp(root, "AUC Temperature", &auc_temp, true);
}
root = api_add_bool(root, "Connection Overloaded", &info->conn_overloaded, true);
root = api_add_int(root, "Voltage Level Offset", &opt_avalon8_voltage_level_offset, true);
root = api_add_uint32(root, "Nonce Mask", &opt_avalon8_nonce_mask, true);
return root;
}
/* format: voltage[-addr[-miner]]
* addr[0, AVA8_DEFAULT_MODULARS - 1], 0 means all modulars
* miner[0, miner_count], 0 means all miners
*/
char *set_avalon8_device_voltage_level(struct cgpu_info *avalon8, char *arg)
{
struct avalon8_info *info = avalon8->device_data;
int val;
unsigned int addr = 0, i, j;
uint32_t miner_id = 0;
if (!(*arg))
return NULL;
sscanf(arg, "%d-%d-%d", &val, &addr, &miner_id);
if (val < AVA8_DEFAULT_VOLTAGE_LEVEL_MIN || val > AVA8_DEFAULT_VOLTAGE_LEVEL_MAX)
return "Invalid value passed to set_avalon8_device_voltage_level";
if (addr >= AVA8_DEFAULT_MODULARS) {
applog(LOG_ERR, "invalid modular index: %d, valid range 0-%d", addr, (AVA8_DEFAULT_MODULARS - 1));
return "Invalid modular index to set_avalon8_device_voltage_level";
}
if (!addr) {
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (!info->enable[i])
continue;
if (miner_id > info->miner_count[i]) {
applog(LOG_ERR, "invalid miner index: %d, valid range 0-%d", miner_id, info->miner_count[i]);
return "Invalid miner index to set_avalon8_device_voltage_level";
}
if (miner_id)
info->set_voltage_level[i][miner_id - 1] = val;
else {
for (j = 0; j < info->miner_count[i]; j++)
info->set_voltage_level[i][j] = val;
}
avalon8_set_voltage_level(avalon8, i, info->set_voltage_level[i]);
}
} else {
if (!info->enable[addr]) {
applog(LOG_ERR, "Disabled modular:%d", addr);
return "Disabled modular to set_avalon8_device_voltage_level";
}
if (miner_id > info->miner_count[addr]) {
applog(LOG_ERR, "invalid miner index: %d, valid range 0-%d", miner_id, info->miner_count[addr]);
return "Invalid miner index to set_avalon8_device_voltage_level";
}
if (miner_id)
info->set_voltage_level[addr][miner_id - 1] = val;
else {
for (j = 0; j < info->miner_count[addr]; j++)
info->set_voltage_level[addr][j] = val;
}
avalon8_set_voltage_level(avalon8, addr, info->set_voltage_level[addr]);
}
applog(LOG_NOTICE, "%s-%d: Update voltage-level to %d", avalon8->drv->name, avalon8->device_id, val);
return NULL;
}
/*
* format: freq[-addr[-miner]]
* addr[0, AVA8_DEFAULT_MODULARS - 1], 0 means all modulars
* miner[0, miner_count], 0 means all miners
*/
char *set_avalon8_device_freq(struct cgpu_info *avalon8, char *arg)
{
struct avalon8_info *info = avalon8->device_data;
unsigned int val, addr = 0, i, j, k;
uint32_t miner_id = 0;
if (!(*arg))
return NULL;
sscanf(arg, "%d-%d-%d", &val, &addr, &miner_id);
if (val > AVA8_DEFAULT_FREQUENCY_MAX)
return "Invalid value passed to set_avalon8_device_freq";
if (addr >= AVA8_DEFAULT_MODULARS) {
applog(LOG_ERR, "invalid modular index: %d, valid range 0-%d", addr, (AVA8_DEFAULT_MODULARS - 1));
return "Invalid modular index to set_avalon8_device_freq";
}
if (!addr) {
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (!info->enable[i])
continue;
if (miner_id > info->miner_count[i]) {
applog(LOG_ERR, "invalid miner index: %d, valid range 0-%d", miner_id, info->miner_count[i]);
return "Invalid miner index to set_avalon8_device_freq";
}
if (miner_id) {
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++)
info->set_frequency[i][miner_id - 1][k] = val;
avalon8_set_freq(avalon8, i, miner_id - 1, info->set_frequency[i][miner_id - 1]);
} else {
for (j = 0; j < info->miner_count[i]; j++) {
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++)
info->set_frequency[i][j][k] = val;
avalon8_set_freq(avalon8, i, j, info->set_frequency[i][j]);
}
}
}
} else {
if (!info->enable[addr]) {
applog(LOG_ERR, "Disabled modular:%d", addr);
return "Disabled modular to set_avalon8_device_freq";
}
if (miner_id > info->miner_count[addr]) {
applog(LOG_ERR, "invalid miner index: %d, valid range 0-%d", miner_id, info->miner_count[addr]);
return "Invalid miner index to set_avalon8_device_freq";
}
if (miner_id) {
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++)
info->set_frequency[addr][miner_id - 1][k] = val;
avalon8_set_freq(avalon8, addr, miner_id - 1, info->set_frequency[addr][miner_id - 1]);
} else {
for (j = 0; j < info->miner_count[addr]; j++) {
for (k = 0; k < AVA8_DEFAULT_PLL_CNT; k++)
info->set_frequency[addr][j][k] = val;
avalon8_set_freq(avalon8, addr, j, info->set_frequency[addr][j]);
}
}
}
applog(LOG_NOTICE, "%s-%d: Update frequency to %d",
avalon8->drv->name, avalon8->device_id, val);
return NULL;
}
char *set_avalon8_factory_info(struct cgpu_info *avalon8, char *arg)
{
struct avalon8_info *info = avalon8->device_data;
char type[AVA8_DEFAULT_FACTORY_INFO_1_CNT];
int val;
if (!(*arg))
return NULL;
memset(type, 0, AVA8_DEFAULT_FACTORY_INFO_1_CNT);
sscanf(arg, "%d-%s", &val, type);
if ((val != AVA8_DEFAULT_FACTORY_INFO_0_IGNORE) &&
(val < AVA8_DEFAULT_FACTORY_INFO_0_MIN || val > AVA8_DEFAULT_FACTORY_INFO_0_MAX))
return "Invalid value passed to set_avalon8_factory_info";
info->factory_info[0] = val;
memcpy(&info->factory_info[1], type, AVA8_DEFAULT_FACTORY_INFO_1_CNT);
avalon8_set_factory_info(avalon8, 0, (uint8_t *)info->factory_info);
applog(LOG_NOTICE, "%s-%d: Update factory info %d",
avalon8->drv->name, avalon8->device_id, val);
return NULL;
}
char *set_avalon8_overclocking_info(struct cgpu_info *avalon8, char *arg)
{
struct avalon8_info *info = avalon8->device_data;
int val;
if (!(*arg))
return NULL;
sscanf(arg, "%d", &val);
if (val != AVA8_DEFAULT_OVERCLOCKING_OFF && val != AVA8_DEFAULT_OVERCLOCKING_ON)
return "Invalid value passed to set_avalon8_overclocking_info";
info->overclocking_info[0] = val;
avalon8_set_overclocking_info(avalon8, 0, (uint8_t *)info->overclocking_info);
applog(LOG_NOTICE, "%s-%d: Update Overclocking info %d",
avalon8->drv->name, avalon8->device_id, val);
return NULL;
}
static char *avalon8_set_device(struct cgpu_info *avalon8, char *option, char *setting, char *replybuf)
{
unsigned int val;
struct avalon8_info *info = avalon8->device_data;
if (strcasecmp(option, "help") == 0) {
sprintf(replybuf, "pdelay|fan|frequency|led|voltage");
return replybuf;
}
if (strcasecmp(option, "pdelay") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing polling delay setting");
return replybuf;
}
val = (unsigned int)atoi(setting);
if (val < 1 || val > 65535) {
sprintf(replybuf, "invalid polling delay: %d, valid range 1-65535", val);
return replybuf;
}
opt_avalon8_polling_delay = val;
applog(LOG_NOTICE, "%s-%d: Update polling delay to: %d",
avalon8->drv->name, avalon8->device_id, val);
return NULL;
}
if (strcasecmp(option, "fan") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing fan value");
return replybuf;
}
if (set_avalon8_fan(setting)) {
sprintf(replybuf, "invalid fan value, valid range 0-100");
return replybuf;
}
applog(LOG_NOTICE, "%s-%d: Update fan to %d-%d",
avalon8->drv->name, avalon8->device_id,
opt_avalon8_fan_min, opt_avalon8_fan_max);
return NULL;
}
if (strcasecmp(option, "frequency") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing frequency value");
return replybuf;
}
return set_avalon8_device_freq(avalon8, setting);
}
if (strcasecmp(option, "led") == 0) {
int val_led = -1;
if (!setting || !*setting) {
sprintf(replybuf, "missing module_id setting");
return replybuf;
}
sscanf(setting, "%d-%d", &val, &val_led);
if (val < 1 || val >= AVA8_DEFAULT_MODULARS) {
sprintf(replybuf, "invalid module_id: %d, valid range 1-%d", val, AVA8_DEFAULT_MODULARS);
return replybuf;
}
if (!info->enable[val]) {
sprintf(replybuf, "the current module was disabled %d", val);
return replybuf;
}
if (val_led == -1)
info->led_indicator[val] = !info->led_indicator[val];
else {
if (val_led < 0 || val_led > 1) {
sprintf(replybuf, "invalid LED status: %d, valid value 0|1", val_led);
return replybuf;
}
if (val_led != info->led_indicator[val])
info->led_indicator[val] = val_led;
}
applog(LOG_NOTICE, "%s-%d: Module:%d, LED: %s",
avalon8->drv->name, avalon8->device_id,
val, info->led_indicator[val] ? "on" : "off");
return NULL;
}
if (strcasecmp(option, "voltage-level") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing voltage-level value");
return replybuf;
}
return set_avalon8_device_voltage_level(avalon8, setting);
}
if (strcasecmp(option, "factory") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing factory info");
return replybuf;
}
return set_avalon8_factory_info(avalon8, setting);
}
if (strcasecmp(option, "reboot") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing reboot value");
return replybuf;
}
sscanf(setting, "%d", &val);
if (val < 1 || val >= AVA8_DEFAULT_MODULARS) {
sprintf(replybuf, "invalid module_id: %d, valid range 1-%d", val, AVA8_DEFAULT_MODULARS);
return replybuf;
}
info->reboot[val] = true;
return NULL;
}
if (strcasecmp(option, "overclocking") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing overclocking info");
return replybuf;
}
return set_avalon8_overclocking_info(avalon8, setting);
}
sprintf(replybuf, "Unknown option: %s", option);
return replybuf;
}
static void avalon8_statline_before(char *buf, size_t bufsiz, struct cgpu_info *avalon8)
{
struct avalon8_info *info = avalon8->device_data;
int temp = -273;
int fanmin = AVA8_DEFAULT_FAN_MAX;
int i, j, k;
uint32_t frequency = 0;
float ghs_sum = 0, mhsmm = 0;
double pass_num = 0.0, fail_num = 0.0;
uint8_t flag = 0;
for (i = 1; i < AVA8_DEFAULT_MODULARS; i++) {
if (!info->enable[i])
continue;
if (fanmin >= info->fan_pct[i])
fanmin = info->fan_pct[i];
if (temp < get_temp_max(info, i))
temp = get_temp_max(info, i);
mhsmm = avalon8_hash_cal(avalon8, i);
frequency += (mhsmm / (info->asic_count[i] * info->miner_count[i] * 172));
ghs_sum += (mhsmm / 1000);
if (!strncmp((char *)&(info->mm_version[i]), "851", 3)) {
for (j = 0; j < info->miner_count[i]; j++) {
for (k = 0; k < info->asic_count[i]; k++) {
pass_num += info->get_asic[i][j][k][0];
fail_num += info->get_asic[i][j][k][1];
}
}
flag = 1;
}
}
if (info->mm_count)
frequency /= info->mm_count;
if (flag)
tailsprintf(buf, bufsiz, "%4dMhz %.2fGHS %2dC %.2f%% %3d%%", frequency, ghs_sum, temp,
(fail_num + pass_num) ? fail_num * 100.0 / (fail_num + pass_num) : 0, fanmin);
else
tailsprintf(buf, bufsiz, "%4dMhz %.2fGHS %2dC %3d%%", frequency, ghs_sum, temp, fanmin);
}
struct device_drv avalon8_drv = {
.drv_id = DRIVER_avalon8,
.dname = "avalon8",
.name = "AV8",
.set_device = avalon8_set_device,
.get_api_stats = avalon8_api_stats,
.get_statline_before = avalon8_statline_before,
.drv_detect = avalon8_detect,
.thread_prepare = avalon8_prepare,
.hash_work = hash_driver_work,
.flush_work = avalon8_sswork_update,
.update_work = avalon8_sswork_update,
.scanwork = avalon8_scanhash,
.max_diff = AVA8_DRV_DIFFMAX,
.genwork = true,
};
1
https://gitee.com/actionchen/cgminer.git
git@gitee.com:actionchen/cgminer.git
actionchen
cgminer
cgminer
master

搜索帮助