Ai
1 Star 0 Fork 3

aiobc/Algorithms

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
LongestCommonSubsequence.java 2.17 KB
一键复制 编辑 原始数据 按行查看 历史
Rafael Chaves 提交于 2020-02-03 02:07 +08:00 . Adopt standard Java project layout (#120)
/**
* This file contains an implementation of finding the Longest Common Subsequence (LCS) between two
* strings using dynamic programming.
*
* <p>Time Complexity: O(nm)
*
* @author William Fiset, william.alexandre.fiset@gmail.com
*/
package com.williamfiset.algorithms.dp;
public class LongestCommonSubsequence {
// Returns a non unique Longest Common Subsequence
// between the strings str1 and str2 in O(nm)
public static String lcs(char[] A, char[] B) {
if (A == null || B == null) return null;
final int n = A.length;
final int m = B.length;
if (n == 0 || m == 0) return null;
int[][] dp = new int[n + 1][m + 1];
// Suppose A = a1a2..an-1an and B = b1b2..bn-1bn
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
// If ends match the LCS(a1a2..an-1an, b1b2..bn-1bn) = LCS(a1a2..an-1, b1b2..bn-1) + 1
if (A[i - 1] == B[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
// If the ends do not match the LCS of a1a2..an-1an and b1b2..bn-1bn is
// max( LCS(a1a2..an-1, b1b2..bn-1bn), LCS(a1a2..an-1an, b1b2..bn-1) )
else dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
int lcsLen = dp[n][m];
char[] lcs = new char[lcsLen];
int index = 0;
// Backtrack to find a LCS. We search for the cells
// where we included an element which are those with
// dp[i][j] != dp[i-1][j] and dp[i][j] != dp[i][j-1])
int i = n, j = m;
while (i >= 1 && j >= 1) {
int v = dp[i][j];
// The order of these may output different LCSs
while (i > 1 && dp[i - 1][j] == v) i--;
while (j > 1 && dp[i][j - 1] == v) j--;
// Make sure there is a match before adding
if (v > 0) lcs[lcsLen - index++ - 1] = A[i - 1]; // or B[j-1];
i--;
j--;
}
return new String(lcs, 0, lcsLen);
}
public static void main(String[] args) {
char[] A = {'A', 'X', 'B', 'C', 'Y'};
char[] B = {'Z', 'A', 'Y', 'W', 'B', 'C'};
System.out.println(lcs(A, B)); // ABC
A = new char[] {'3', '9', '8', '3', '9', '7', '9', '7', '0'};
B = new char[] {'3', '3', '9', '9', '9', '1', '7', '2', '0', '6'};
System.out.println(lcs(A, B)); // 339970
}
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/aiobc/Algorithms.git
git@gitee.com:aiobc/Algorithms.git
aiobc
Algorithms
Algorithms
master

搜索帮助