Fetch the repository succeeded.
import gzip
import pickle
import cv2
import numpy as np
"""OpenCV ANN Handwritten digit recognition example
Wraps OpenCV's own ANN by automating the loading of data and supplying default paramters,
such as 20 hidden layers, 10000 samples and 1 training epoch.
The load data code is adapted from http://neuralnetworksanddeeplearning.com/chap1.html
by Michael Nielsen
"""
def load_data():
mnist = gzip.open('./digits_data/mnist.pkl.gz', 'rb')
training_data, test_data = pickle.load(mnist)
mnist.close()
return (training_data, test_data)
def wrap_data():
tr_d, te_d = load_data()
training_inputs = tr_d[0]
training_results = [vectorized_result(y) for y in tr_d[1]]
training_data = zip(training_inputs, training_results)
test_data = zip(te_d[0], te_d[1])
return (training_data, test_data)
def vectorized_result(j):
e = np.zeros((10,), np.float32)
e[j] = 1.0
return e
def create_ann(hidden_nodes=60):
ann = cv2.ml.ANN_MLP_create()
ann.setLayerSizes(np.array([784, hidden_nodes, 10]))
ann.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 0.6, 1.0)
ann.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP, 0.1, 0.1)
ann.setTermCriteria(
(cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 100, 1.0))
return ann
def train(ann, samples=50000, epochs=10):
tr, test = wrap_data()
# Convert iterator to list so that we can iterate multiple times
# in multiple epochs.
tr = list(tr)
for epoch in range(epochs):
print("Completed %d/%d epochs" % (epoch, epochs))
counter = 0
for img in tr:
if (counter > samples):
break
if (counter % 1000 == 0):
print("Epoch %d: Trained on %d/%d samples" % \
(epoch, counter, samples))
counter += 1
sample, response = img
data = cv2.ml.TrainData_create(
np.array([sample], dtype=np.float32),
cv2.ml.ROW_SAMPLE,
np.array([response], dtype=np.float32))
if ann.isTrained():
ann.train(data, cv2.ml.ANN_MLP_UPDATE_WEIGHTS | cv2.ml.ANN_MLP_NO_INPUT_SCALE | cv2.ml.ANN_MLP_NO_OUTPUT_SCALE)
else:
ann.train(data, cv2.ml.ANN_MLP_NO_INPUT_SCALE | cv2.ml.ANN_MLP_NO_OUTPUT_SCALE)
print("Completed all epochs!")
return ann, test
def test(ann, test_data):
num_tests = 0
num_correct = 0
for img in test_data:
num_tests += 1
sample, correct_digit_class = img
digit_class = predict(ann, sample)[0]
if digit_class == correct_digit_class:
num_correct += 1
print('Accuracy: %.2f%%' % (100.0 * num_correct / num_tests))
def predict(ann, sample):
if sample.shape != (784,):
if sample.shape != (28, 28):
sample = cv2.resize(sample, (28, 28),
interpolation=cv2.INTER_LINEAR)
sample = sample.reshape(784,)
return ann.predict(np.array([sample], dtype=np.float32))
"""usage:
ann, test_data = train(create_ann())
test(ann, test_data)
"""
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。