随机森林是利用多个决策树对样本进行训练、分类并预测的一种算法,主要应用于回归和分类场景。在对数据进行分类的同时,还可以给出各个变量的重要性评分,评估各个变量在分类中所起的作用。随机森林是一种比较有名的集成学习方法,属于集成学习算法中弱学习器之间不存在依赖的一部分,其因为这个优点可以并行化运行,因此随机森林在一些大赛中往往是首要选择的模型。
最近更新: 4年多前支持向量机(Support Vector Machine, SVM)、岭回归(英文名:ridge regression, Tikhonov regularization)、LASSO全称Least absolute shrinkage and selection operator。
最近更新: 4年多前全基因组选择(Genomic selection, GS)是一种利用覆盖全基因组的高密度标记进行选择育种的新方法,可通过早期选择缩短世代间隔,提高育种值(Genomic Estimated Breeding Value, GEBV)估计准确性等加快遗传进展,尤其对低遗传力、难测定的复杂性状具有较好的预测效果,真正实现了基因组技术指导育种实践。
最近更新: 4年多前