197 Star 1.3K Fork 1.2K

GVPAscend/MindSpeed-LLM

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
mtf_dataset.py 2.32 KB
一键复制 编辑 原始数据 按行查看 历史
DONGHAORAN 提交于 8个月前 . !1958整改仓库文件结构
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multitask Finetune style dataset."""
import glob
import re
import numpy as np
import torch
from megatron.core.datasets.indexed_dataset import IndexedDataset
from mindspeed_llm.tasks.utils.error_utils import ensure_valid
class MTFDataset(torch.utils.data.Dataset):
def __init__(
self,
name,
data_prefix,
documents,
):
# Params to store.
self.name = name
# Dataset.
self.packed_indexed_dataset = get_packed_indexed_dataset(data_prefix)
# Checks
ensure_valid(np.min(documents) >= 0)
ensure_valid(len(self.packed_indexed_dataset) > 0)
self.length = len(list(self.packed_indexed_dataset.values())[0])
ensure_valid(np.max(documents) < self.length)
for dataset in self.packed_indexed_dataset.values():
if len(dataset) != self.length:
raise Exception("Dimension is not correct !")
def __len__(self):
return self.length
def __getitem__(self, idx):
packed_data = dict()
for key, dataset in self.packed_indexed_dataset.items():
packed_data[key] = dataset.get(idx)
ensure_valid(len(packed_data[key]) > 0)
return packed_data
def get_packed_indexed_dataset(data_prefix: str):
index_dataset_name = f"{data_prefix}_packed_*_document*"
names = glob.glob(index_dataset_name)
template = f"{data_prefix}_packed_(.*)_document(.*)"
all_field = set()
for name in names:
fields = re.match(template, name)
all_field.add(fields.group(1))
packed_dataset = dict()
for field in all_field:
packed_dataset[field] = IndexedDataset(f"{data_prefix}_packed_{field}_document")
return packed_dataset
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/MindSpeed-LLM.git
git@gitee.com:ascend/MindSpeed-LLM.git
ascend
MindSpeed-LLM
MindSpeed-LLM
2.1.0

搜索帮助