代码拉取完成,页面将自动刷新
Network="FluxLora"
model_name="black-forest-labs/FLUX.1-dev"
dataset_name="pokemon-blip-captions"
batch_size=8
num_processors=8
max_train_steps=5000
mixed_precision="bf16"
resolution=512
gradient_accumulation_steps=1
config_file="${mixed_precision}_accelerate_config.yaml"
for para in $*; do
if [[ $para == --model_name* ]]; then
model_name=$(echo ${para#*=})
elif [[ $para == --dataset_name* ]]; then
dataset_name=$(echo ${para#*=})
elif [[ $para == --batch_size* ]]; then
batch_size=$(echo ${para#*=})
elif [[ $para == --max_train_steps* ]]; then
max_train_steps=$(echo ${para#*=})
elif [[ $para == --mixed_precision* ]]; then
mixed_precision=$(echo ${para#*=})
elif [[ $para == --resolution* ]]; then
resolution=$(echo ${para#*=})
elif [[ $para == --gradient_accumulation_steps* ]]; then
gradient_accumulation_steps=$(echo ${para#*=})
elif [[ $para == --config_file* ]]; then
config_file=$(echo ${para#*=})
fi
done
export ASCEND_SLOG_PRINT_TO_STDOUT=0
export ASCEND_GLOBAL_LOG_LEVEL=3
export ASCEND_GLOBAL_EVENT_ENABLE=0
export TASK_QUEUE_ENABLE=2
export COMBINED_ENABLE=1
export HCCL_WHITELIST_DISABLE=1
export HCCL_CONNECT_TIMEOUT=1200
export ACLNN_CACHE_LIMIT=100000
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export TOKENIZERS_PARALLELISM=false
export OMP_NUM_THREADS=1
export CPU_AFFINITY_CONF=1
# cd到与test文件夹同层级目录下执行脚本,提高兼容性;test_path_dir为包含test文件夹的路径
cur_path=$(pwd)
cur_path_last_dirname=${cur_path##*/}
if [ x"${cur_path_last_dirname}" == x"test" ]; then
test_path_dir=${cur_path}
cd ..
cur_path=$(pwd)
else
test_path_dir=${cur_path}
fi
echo ${test_path_dir}
# source ${test_path_dir}/env_npu.sh
#创建DeviceID输出目录,不需要修改
output_path=${cur_path}/logs
mkdir -p ${output_path}
#训练开始时间,不需要修改
start_time=$(date +%s)
echo "start_time: ${start_time}"
accelerate launch --config_file ${config_file} \
../advanced_diffusion_training/train_dreambooth_lora_flux_advanced.py \
--pretrained_model_name_or_path=$model_name \
--dataset_name=$dataset_name \
--instance_prompt="a photo of pokemon" \
--resolution=$resolution \
--train_batch_size=$batch_size \
--gradient_checkpointing \
--mixed_precision=$mixed_precision \
--gradient_accumulation_steps=$gradient_accumulation_steps \
--dataloader_num_workers=8 \
--learning_rate=1e-06 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=$max_train_steps \
--validation_prompt="A photo of pokemon in a bucket" \
--validation_epochs=500 \
--checkpointing_steps=5001 \
--seed="0" \
--output_dir=${output_path} \
2>&1 | tee ${output_path}/train_${mixed_precision}_flux_dreambooth_lora.log
wait
chmod 440 ${output_path}/train_${mixed_precision}_flux_dreambooth_lora.log
#训练结束时间,不需要修改
end_time=$(date +%s)
e2e_time=$(($end_time - $start_time))
#结果打印,不需要修改
echo "------------------ Final result ------------------"
#输出性能FPS,需要模型审视修改
AverageIts=$(grep -oE '[0-9.]+(it/s|s/it), ' "${output_path}/train_${mixed_precision}_flux_dreambooth_lora.log" | \
sed -n '100,399p' | \
awk '
{
match($0, /^([0-9.]+)(it\/s|s\/it)/, arr)
num = arr[1]
unit = arr[2]
if (unit == "it/s") {
value = num
} else {
value = 1.0 / num
}
sum += value
count++
}
END {
print sum / count
}
')
echo "Average it/s: ${AverageIts}"
FPS=$(awk 'BEGIN{printf "%.2f\n",'${batch_size}'*'${num_processors}'*'${AverageIts}'}')
#获取性能数据,不需要修改
#吞吐量
ActualFPS=$(awk 'BEGIN{printf "%.2f\n", '${FPS}'}')
#打印,不需要修改
echo "Final Performance images/sec : $ActualFPS"
#loss值,不需要修改
ActualLoss=$(grep -o "loss=[0-9.]*" ${output_path}/train_${mixed_precision}_flux_dreambooth_lora.log| awk 'END {print $NF}')
#打印,不需要修改
echo "Final Train Loss : ${ActualLoss}"
echo "E2E Training Duration sec : $e2e_time"
#性能看护结果汇总
#训练用例信息,不需要修改
BatchSize=${batch_size}
DeviceType=$(uname -m)
CaseName=${Network}_bs${BatchSize}_'8p'_'acc'
#关键信息打印到${CaseName}.log中,不需要修改
echo "Network = ${Network}" >${output_path}/${CaseName}.log
echo "BatchSize = ${BatchSize}" >>${output_path}/${CaseName}.log
echo "DeviceType = ${DeviceType}" >>${output_path}/${CaseName}.log
echo "CaseName = ${CaseName}" >>${output_path}/${CaseName}.log
echo "ActualFPS = ${ActualFPS}" >>${output_path}/${CaseName}.log
echo "TrainingTime = ${TrainingTime}" >>${output_path}/${CaseName}.log
echo "ActualLoss = ${ActualLoss}" >>${output_path}/${CaseName}.log
echo "E2ETrainingTime = ${e2e_time}" >>${output_path}/${CaseName}.log
echo "TrainingTime = ${AverageIts}" >>${output_path}/${CaseName}.log
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。