Ai
42 Star 397 Fork 242

Ascend/MindSpeed-MM
Paused

Create your Gitee Account
Explore and code with more than 13.5 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
patch_flux.py 3.83 KB
Copy Edit Raw Blame History
J石页 authored 2024-12-18 16:10 +08:00 . !520【特性】sd3/flux的lora断点权重完善
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import torch
from diffusers import FluxPipeline
from peft.utils import get_peft_model_state_dict
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
class TorchPatcher:
@staticmethod
def new_get_preferred_device(self) -> torch.device:
"""
Return the preferred device to be used when creating tensors for collectives.
This method takes into account the asccociated process group
This patch method makes the torch npu available for distribution
"""
if dist.get_backend(self._process_group) == dist.Backend.NCCL:
return torch.device(torch.cuda.current_device())
try:
import torch_npu
return torch.device(torch_npu.npu.current_device())
except Exception as e:
return torch.device("cpu")
@classmethod
def apply_patch(cls):
# Apply the patch for npu distribution
ShardedTensor._get_preferred_device = cls.new_get_preferred_device
def config_gc():
# set gc threshold, best range from experiments
gc.set_threshold(700, 50, 1000)
# Save Lora weights for checkpointing steps
def create_save_model_hook(
accelerator, unwrap_model, transformer, text_encoder_one, args, weight_dtype
):
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
transformer_lora_layers_to_save = None
text_encoder_one_lora_layers_to_save = None
for model in models:
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_model = unwrap_model(model)
if args.upcast_before_saving:
transformer_model = transformer_model.to(torch.float32)
else:
transformer_model = transformer_model.to(weight_dtype)
transformer_lora_layers_to_save = get_peft_model_state_dict(
transformer_model
)
elif (
isinstance(
unwrap_model(model), type(unwrap_model(text_encoder_one))
)
and args.train_text_encoder
):
text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(
model.to(torch.float32)
)
elif (
isinstance(
unwrap_model(model), type(unwrap_model(text_encoder_one))
)
and not args.train_text_encoder
):
text_encoder_one_lora_layers_to_save = None
else:
raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
FluxPipeline.save_lora_weights(
output_dir,
transformer_lora_layers=transformer_lora_layers_to_save,
text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
)
return save_model_hook
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ascend/MindSpeed-MM.git
git@gitee.com:ascend/MindSpeed-MM.git
ascend
MindSpeed-MM
MindSpeed-MM
master

Search