代码拉取完成,页面将自动刷新
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from accelerate import DistributedType
from diffusers import SanaPipeline, SanaTransformer2DModel
from diffusers.training_utils import cast_training_params
from peft.utils import get_peft_model_state_dict
# Save Lora weights for checkpointing steps
def create_save_model_hook(
accelerator,
unwrap_model,
transformer,
):
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
transformer_lora_layers_to_save = None
for model in models:
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_model = unwrap_model(model)
transformer_lora_layers_to_save = get_peft_model_state_dict(
transformer_model
)
else:
raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
SanaPipeline.save_lora_weights(
output_dir,
transformer_lora_layers=transformer_lora_layers_to_save,
)
return save_model_hook
# Load Lora weights from checkpointing steps
def create_load_model_hook(
accelerator,
unwrap_model,
transformer,
args,
):
def load_model_hook(models, output_dir):
transformer_ = None
if not accelerator.distributed_type == DistributedType.DEEPSPEED:
while len(models) > 0:
model = models.pop()
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
else:
transformer_ = SanaTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
local_files_only=True,
)
# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if args.mixed_precision == "fp16":
models = [transformer_]
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models)
return load_model_hook
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。