代码拉取完成,页面将自动刷新
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import time
import torch
import torch.distributed as dist
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def make_average_meters(n:int):
return [AverageMeter() for i in range(n)]
class BlockTimer(object):
"""Measures time used of code block"""
def __init__(self, device_id='', description=''):
if device_id in ['', None]:
device_id = '(unspecified device)'
if description == '':
self.start_str = "{} starts.".format(device_id)
self.finish_formatter = "{} finished. Time used = {{:.3f}}s".format(device_id)
else:
self.start_str = "{} starts {}.".format(device_id, description)
self.finish_formatter = "{} finished {}. Time used = {{:.3f}}s".format(device_id, description)
def __enter__(self):
print(self.start_str)
self.start_time = time.time()
def __exit__(self, exc_type, exc_val, exc_tb):
print(self.finish_formatter.format(time.time() - self.start_time))
def reduce_tensor(tensor, n):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= n
return rt
def remove_ddp_module_prefix(state_dict):
'''remove 'module.' prefix generated by distributed training'''
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k.startswith('module.'):
k = k[7:]
new_state_dict[k] = v
return new_state_dict
def load_state_dict(model_path, map_location='cpu'):
state_dict = torch.load(model_path, map_location=map_location)
return remove_ddp_module_prefix(state_dict)
def save_state_dict(state_dict, model_path):
new_state_dict = remove_ddp_module_prefix(state_dict)
torch.save(new_state_dict, model_path)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。