46 Star 499 Fork 1.3K

Ascend/ModelZoo-PyTorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

VoVNet-39

This implements training of VoVNet-39 on the ImageNet dataset, mainly modified from GitHub.

VoVNet-39 Detail

As of the current date, Ascend-Pytorch is still inefficient for contiguous operations.Therefore, VoVNet-39 is re-implemented using semantics such as custom OP.

Requirements

Training

To train a model, run main.py with the desired model architecture and the path to the ImageNet dataset:

# training 1p performance
bash ./test/train_performance_1p.sh --data_path=real_data_path

# training 8p accuracy
bash ./test/train_full_8p.sh --data_path=real_data_path

# training 8p performance
bash ./test/train_performance_8p.sh --data_path=real_data_path

Log path: - test/output/devie_id/train_${device_id}.log # training detail log - test/output/devie_id/VoVNet39_for_PyTorch_bs128_8p_perf.log # 8p training performance result log - test/output/devie_id/VoVNet39_for_PyTorch_bs128_8p_acc.log # 8p training accuracy result log

Running demo

Run demo.py as the demo script with trained model (model.pth as example):

python3 demo.py model.pth

VoVNet-39 training result

Acc@1 FPS Npu_nums Epochs Initial LR AMP_Type
- 892 1 1 0.0125 O2
77.053 4445 8 90 0.1 O2

Statement

For details about the public address of the code in this repository, you can get from the file public_address_statement.md

马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/ModelZoo-PyTorch.git
git@gitee.com:ascend/ModelZoo-PyTorch.git
ascend
ModelZoo-PyTorch
ModelZoo-PyTorch
master

搜索帮助