This implements training of VoVNet-39 on the ImageNet dataset, mainly modified from GitHub.
As of the current date, Ascend-Pytorch is still inefficient for contiguous operations.Therefore, VoVNet-39 is re-implemented using semantics such as custom OP.
pip install -r requirements.txt
torchvision==0.5.0(x86) && torchvision==0.2.0(arm)
To train a model, run main.py
with the desired model architecture and the path to the ImageNet dataset:
# training 1p performance
bash ./test/train_performance_1p.sh --data_path=real_data_path
# training 8p accuracy
bash ./test/train_full_8p.sh --data_path=real_data_path
# training 8p performance
bash ./test/train_performance_8p.sh --data_path=real_data_path
Log path: - test/output/devie_id/train_${device_id}.log # training detail log - test/output/devie_id/VoVNet39_for_PyTorch_bs128_8p_perf.log # 8p training performance result log - test/output/devie_id/VoVNet39_for_PyTorch_bs128_8p_acc.log # 8p training accuracy result log
Run demo.py
as the demo script with trained model (model.pth
as example):
python3 demo.py model.pth
Acc@1 | FPS | Npu_nums | Epochs | Initial LR | AMP_Type |
---|---|---|---|---|---|
- | 892 | 1 | 1 | 0.0125 | O2 |
77.053 | 4445 | 8 | 90 | 0.1 | O2 |
For details about the public address of the code in this repository, you can get from the file public_address_statement.md
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。