52 Star 519 Fork 1.3K

Ascend/ModelZoo-PyTorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README

欢迎使用Ascend ACL_PyTorch

为方便更多开发者体验和使用昇腾芯片澎湃推理算力,该目录下提供了经典和主流算法模型实现昇腾服务器推理的端到端流程,更多模型持续更新中。如果您有任何需求,请在modelzoo/issues提交issue,我们会及时处理。如果您希望适配您的自定义模型,我们同时提供在昇腾设备上自行适配模型的ONNX推理流程

如何贡献

在开始贡献之前,请先阅读CONTRIBUTING。 谢谢!

目前ACL_PyTorch仓库已有模型398

注意:
在提交新模型时,请加上模型ID用于区分,为防止重复提交模型,请执行脚本get_modelID.py,该脚本会自动检索ACL_PyTorch仓库中所有与您提交模型相关的已有模型,请自行查看脚本给出的链接,如果均不同,则可以输入1或true用于获取模型ID。由于该脚本使用正则匹配,后续新模型刷新到主页需要添加README内容时,格式请参考其余模型,并且同步刷新上文模型数量。脚本执行方式如下:
python3 get_modelID.py --model your_model_name

参数说明:
--model:请输入您所需提交新模型的简称,比如Conformer-base模型,您可以输入conformer用于检索所有相关模型(大小写不敏感)

支持模型列表(按字母顺序排序)

说明:
以下无精度指标的模型均需人工与在线推理结果比较
因使用版本差异,模型性能可能存在波动,性能仅供参考

规范模型

CV-classfication

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Top1Acc Top5Acc mAP
100007 Big-Transfer CIFAR-10 97.62% 1758.00(bs16) bs x 3 x 128 x 128
100008 C3D UCF101 81.87% 54.92(bs4) bs x 10 x 3 x16 x 112 x 112
100019 DenseNet121 ImageNet 74.43% 91.96% 2195(bs8) bs x 3 x 224 x 224
100033 GaitSet CASIA-B 95.512% 723(bs64) bs x 100 x 64 x 44
100037 InceptionV3 ImageNet 77.31% 93.46% 2388(bs8) bs x 3 x 299 x2 99
100038 MaskRcnn coco 53.7149% 22.06(bs1) 1 x 3 x 1344 x 1344
100039 MobileNetV1 ImageNet 69.52% 89.05% 13990(bs32) bs x 3 x 224 x 224
100041 MobileNetV2 ImageNet 71.87% 90.32% 7072(bs4) bs x 3 x 224 x 224
100040 MobileNetV3 ImageNet 65.094% 85.432% 15442.12(bs32) bs x 3 x 224 x 224
100075 RegNetX-1.6GF ImageNet 76.93% 93.43% 5426.759(bs8) bs x 3 x 224 x 224
100044 RepVGG ImageNet 72.15% 90.4% 8929(bs32) bs x 3 x 224 x 224
100076 ResNeSt50 ImageNet 80.98% 1704(bs4) bs x 3 x 224 x 224
100077 ResNext101-32x8d ImageNet 79.312% 94.526% 1251(bs8) bs x 3 x 224 x 224
100078 SCNet ImageNet 80.34% 2135(bs4) bs x 3 x 224 x 224
100053 ShuffleNetV1 ImageNet 67.71% 7847(bs16) bs x 3 x 224 x 224
100052 ShuffleNetV2 ImageNet 69.33% 88.34% 7736(bs32) bs x 3 x 224 x 224
100079 SqueezeNet1 ImageNet 57.32% 80.06% 21301(bs8) bs x 3 x 224 x 224
100068 VGG16 ImageNet 71.28% 90.38% 1424(bs16) bs x 3 x 224 x 224
100070 ViT ImageNet 80.63%(patch32_224) 1679.63(patch32_224 bs64) bs x 3 x 224 x 224
100401 Chinese-CLIP 33ms(img,bs20) 20 x 3 x 224 x 224

CV-detection

ID Name Dataset 精度 300I Pro最优性能(对应bs) 800I A2最优性能(对应bs) 输入shape
AP mAP Acc
100080 CascadeRCNN-DCN coco 43.8% 3.9(bs1) 1 x 3 x 1216 x 1216
100010 CenterFace WIDER_FACE hard:74.55%
easy:92.24%
Medium:91.02%
439.9(bs1) bs x 3 x 800 x 800
100011 CenterNet coco 36.4% 34.1(bs4) bs x 3 x 512 x 512
bs x 3 x 800 x 800
100012 CRNN-BuildIn IIIT5K_lmdb 74.87% 17815(bs64) bs x 1 x 32 x 100
100083 DBNet-MobileNetV3 ICDAR2015 77.5% 196(bs1) bs x 736 x 1280 x 3
100020 DETR coco 41.6% 63.75(bs1) 多尺度
100023 EfficientDet-D0 coco 33.4% 260(bs4) bs x 3 x 512 x 512
100024 EfficientNet-B0 ImageNet 75.088%(top1) 2489(bs8) bs x 3 x 224 x 224
100042 OpenPose coco 40.4% 887.45(bs4) bs x 3 x 368 x 6406
100043 PSENet ICDAR2015 acc:80.5%
recall:63.9%
70(bs1) bs x 3 x 704 x 1216
100084 RetinaNet-r50-fpn coco 36.3% 15.48(bs1) 1 x 3 x 1216 x 1216
100048 RetinaNet-ResNet18 coco 31.6% 50(bs1) 1 x 3 x 1216 x 1216
100057 SSD coco 25.4% 337.01(bs4) bs x 3 x 300 x 300
100056 SSD-ResNet34 coco 23% 1324(bs8) bs x 3 x 300 x 300
100085 YOLOV3 coco 63.30% 219(bs4) bs x 3 x 640 x 640
100072 YOLOV4 coco 60.3% 171.15(bs8) bs x 3 x 416 x 416
100073 YOLOV5s2.0 coco 55.3% 998.004(bs4) bs x 3 x 640 x 640
100074 YOLOV5s6.0 coco 55.9% 737.04(bs4) bs x 3 x 640 x 640
100086 YOLOX coco 51.2% 77.4(bs64) bs x 3 x 640 x 640
100399 GLIP coco 46.3% 0.62(bs1) bs x 3 x H x W
100400 GLIP_STATIC 227.43ms(bs1) 1 x 3 x 784 x 1344
100404 InternImage_Detection coco box: 55.6%
seg: 48.6%
1614ms(bs1) 1 x 3 x 1216 x 1216
100406 GroundingDINO coco 52.4% 1378ms(bs1) 877ms(bs1) 多尺度

CV-segmentation

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Acc mIoU
100016 DeeplabV3 Cityscapes 79.12% 4.9(bs1) 1 x 3 x 1024 x 2048
100055 SOLOV2 coco 34% 22(bs1) 1 x 3 x 800 x 1216
100088 UNet carvana 98.6% 75(bs1) bs x 3 x 572 x 572
100405 InternImage_Segmentation ADE20K aAcc: 86.55%
mAcc: 71.8%
59.54% 2067ms(bs1) 多尺度

CV-gan

ID Name Dataset 精度 最优性能(对应bs) 输入shape
300I Pro
100059 StarGAN celeba 1186(bs8) bs x 3 x 128 x 128
bs x 5
100061 StyleGAN2-ADA 代码仓提供 39.81(bs1) 1 x 512

CV-pose_estimation

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Top1Acc Top5Acc
100036 HRNet ImageNet 76.46% 93.14% 2036(bs16) bs x 3 x 224 x 224
100060 STGCN Kinetics 31.59% 53.74% 381(bs1) bs x 3 x 300 x 18 x 2
100407 MuseTalk 代码仓提供 229s(8bs) 多尺度

CV-super_resolution

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
PSNR
100022 EDSR DIV2K 34.6 7.9(bs1) bs x 3 x 1020 x 1020
100089 EDSR-Dynamic B100 32.35 6.9(H:240, W:320) 多尺度

CV-tracking

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Acc
100017 Deepsort MOT16 30.0% yolov3:464.29(bs1)
deep:2950(bs1)
bs x 3 x 416 x 416
100090 T2Vec Proto (精度数据参考链接) 9.85ms 动态输入

CV-image_registration

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Auc@20 Precision
100091 SuperGlue-SuperPoint YFCC100M 74.72% 97.80% 1.4(e2e) 1 x 1 x 1200 x 1600

CV-video_understanding

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Top1Acc Top5Acc
100092 TSM-SthV2 sthv2 61.87% 87.21% 20.77(bs1) bs x 48 x 3 x 256 x 256

Audio

ID Name Dataset 精度 300I Pro最优性能(对应bs) 800I A2最优性能(对应bs) 输入shape
WER CER Acc
100018 DeepSpeech2 an4 9.573 5.515 7.74(bs32) bs x 1 x 161 x 621
bs x 1
100027 EspNet 代码仓提供 430(分档) 多尺度
100032 FastSpeech2 LJSpeech 13.66(bs1) 多尺度
100035 HiFiGAN LJSpeech 637(bs8 mel_len:250) 多尺度
100063 Tacotron2 LJSpeech 33508(bs16) 多尺度
100064 TDNN-buildin Mini Librispeech 99.93% 1358(bs4) bs x 1800 x 24
100093 Conformer aishell 95.04% 60 多尺度
100402 SenseVoice 代码仓提供 80ms(bs1) 40ms(bs1) 多尺度
100403 CosyVoice 代码仓提供 2.0s(rtf) 0.3s(rtf) 多尺度

Nlp

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Acc
100001 ALBERT SST-2 92.8% 1350(bs16) bs x 128
100094 BertBase-Cased-SST2 SST-2 92.43% 2906(bs32) bs x 128
bs x 64
100003 Bert-Base-CH zhwiki 77.94% 254(bs8) bs x 384
100340 TextCNN THUCNews top1acc:90.47%
top5acc:99.35%
29237(bs64) bs x 32
100095 Bert-Uncased-Huggingface SQuAD 1.1 F1:88.2%
EM:80.84%
328.64(bs4) bs x 384
100026 Ernie3 Clue 49% 1313(bs8) bs x 128
100096 M2M100 sacrebleu encoder:224.376(bs1)
der_first_step:82.827(bs1)
decoder:141.6(bs1)
1 x 90
100050 RoBERTa SST-2 94.8% 1473(bs32) bs x 70
100051 SAST ICDAR 91.3% 22(bs1) bs x 3 x 896 x 1536
100006 BiLSTM-CRF CLUE_NER acc=73.5%
recall=69.3%
f1=71.4%
961(bs32) ids:bs,50;mask:bs,50
100348 Uie_for_PyTorch doccano(paddle) f1=100% 1334.26(bs16) input_ids:bsx512;token_type_ids:bsx512;position_ids:bsx512;attention_mask:bsx512
100349 Pet_for_PyTorch eprstmt f1=88.5% 342.79(bs8) bs x 128;bs x 128;bs x 128;bs x 1 x 1 x 128

OCR

ID Name Dataset 精度 最优性能(对应bs) 输入shape
Top1Acc Top5Acc mAP 300I Pro
100082 CRNN-ocr 原仓自带的数据集 78.37% 7969(bs64) bs x 1 x 32 x 160
100087 DBNET-ocr icdar2015 88% 19(bs16) bs x 3 x 736 x 1280

生态贡献模型

CV-classfication

ID Name Dataset 精度 最优性能(对应bs) 输入shape
Top1Acc Top5Acc mAP 300I Pro
100098 3D-AttentionNet CIFAR-10 62.2% 7806.96(bs16) bs x 3 x 32 x 32
100099 3D-ResNets hmdb51 62.22% 830.7165(bs10) 10 x 3 x 16 x 112 x 112
100100 AlexNet ImageNet 56.56% 79.1% 12672(bs64) bs x 3 x 224 x 224
100101 Dino-ResNet50-baseline ImageNet 75.28% 92.56% 87537(bs64) bs x 3 x 224 x 224
100102 BMN Activity1.3 67.69% 114.34(bs1) bs x 400 x 100
100103 BEIT ImageNet 84.68% 516.00(bs8) bs x 3 x 224 x 224
100104 CH-PPOCR-MobileNetV2.0 PaddleOCR 31958.773(bs64) bs x 3 x 48 x 192
100105 Conformer-base ImageNet 83.85% 257.7437(bs8) bs x 3 x 224 x 224
100106 Conformer-Ti ImageNet 81.09% 907.58(bs8) bs x 3 x 224 x 224
100107 ConvMixer ImageNet 81.37% 102.9(bs1) bs x 3 x 224 x 224
100108 ConvNext ImageNet 82.094% 461.9(bs8) bs x 3 x 224 x 224
100109 CSPResNeXt50 ImageNet 79.79% 3251(bs4) bs x 3 x 224 x 224
100110 CSWin-Transformer ImageNet 83.3% 223.5(bs16) bs x 3 x 224 x 224
100111 Deit-Small ImageNet 79.5% 94.83% 415(bs1) bs x 3 x 224 x 224
100112 DPN131 ImageNet 79.47% 94.54% 550(bs4) bs x 3 x 224 x 224
100013 CRNN-Meijieru demo文件 19374(bs64) bs x 1 x 32 x 100
100113 Efficient-3DCNNs UCF-101 81.073% 96.325% 1245.1167(bs4) bs x 3 x 16 x 112 x 112
100114 EfficientNet-B1 ImageNet 75.940% 92.774% 1409.692(bs8) bs x 3 x 240 x 240
100115 EfficientNet-B3 ImageNet 76.25% 92.56% 739.02(bs16) bs x 3 x 300 x 300
100116 EfficientNet-B5 ImageNet 77.2% 92.8% 166.408(bs64) bs x 3 x 456 x 456
100117 EfficientNet-B7 ImageNet 84.4% 75.9(bs32) bs x 3 x 600 x 600
100025 EfficientNet-V2 ImageNet 82.26% 1670(bs64) bs x 3 x 288 x 288
100118 FixRes ImageNet 79.0% 984(bs4) bs x 3 x 224 x 224
100119 FocalTransformer ImageNet 83.586% 7.96(bs1) bs x 3 x 224 x 224
100120 GENet CIFAR-10 94.23% 9981(bs16) bs x 3 x 32 x 32
100121 GhostNet1.0x ImageNet 73.98% 4974(bs8) bs x 3 x 224 x 224
100122 GloRe UCF101 92.12% 99.56% 85(bs4) bs x 3 x 8 x 224 x 224
100123 GoogleNet ImageNet 69.78% 89.53% 6308.38(bs8) bs x 3 x 8 x 224 x 224
100124 HRNet-Image-Classification ImageNet 76.51% 93.22% 1986(bs16) bs x 3 x 224 x 224
100125 InceptionResNetV2 ImageNet 80.15% 95.24% 1310.5(bs8) bs x 3 x 299 x 299
100126 InceptionV4 ImageNet 79.99% 94.86% 1498.5(bs4) bs x 3 x 299 x 299
100127 LResNet100E-IR LFW 99.7% 1432(bs16) 746(bs16) bs x 3 x 112 x 112
100128 LV-Vit ImageNet 83.3% 407.14(bs8) bs x 3 x 224 x 224
100129 MAE ImageNet 83.52%% 266.8(bs1) bs x 3 x 224 x 224
100130 MnasNet ImageNet 73.48% 10650.988(bs16) bs x 3 x 224 x 224
100131 MobileNetV3-large ImageNet 75.62% 92.47% 6998.89(bs16) bs x 3 x 224 x 224
100132 MOCOV2 ImageNet 67.28% 87.82% 3288.38(bs4) bs x 3 x 224 x 224
100133 OSNet Market-1501 82.55% 4075(bs8) bs x 3 x 256 x 128
100134 PAMTRI veri 68.64% 1564.274(bs4) bs x 3 x 256 x 256
100135 PnasNet5large ImageNet 81.76% 203.256(bs4) bs x 3 x 331 x 331
100136 PointNet shapenetcore 97.35% 2374.11(bs1) bs x 3 x 2500
100137 PointNetCNN modelnet40 82.82% 273(bs1) 1 x 1024 x 3
100138 PointNet+ modelnet40 88.4% partone7825(bs4) parttwo5127(bs1) partone[bs, 512, 3] [bs, 3, 32, 512]
parttwo[bs, 3, 128] [bs, 131, 64, 128]
100139 R(2+1)D UCF-101 89.23% 97.45% 84.7777(bs32) bs x 3 x 224 x 224
100140 ReID Market1501 85.9% 4417.628(bs16) bs x 3 x 256 x 128
100141 RegNetY-1.6GF ImageNet 77.86% 93.72% 4417.628(bs16) bs x 3 x 224 x 224
100142 Res2Net101-v1b ImageNet 81.22% 95.36% 347(bs32) bs x 3 x 224 x 224
100143 ResNet152 ImageNet 78.31% 94.05% 1844(bs8) bs x 3 x 256 x 256
100144 ResNet34 ImageNet 73.31% 91.44% 5455(bs16) bs x 3 x 224 x 224
100145 ResNet50-MMLab cifar100 79.9% 9329(bs16) bs x 3 x 32 x 32
100045 ResNet18 ImageNet 69.75% 89.10% 9828(bs128) bs x 3 x 256 x 256
100046 ResNet50 ImageNet 76.14% 92.87% 4250(bs64) bs x 3 x 256 x 256
100146 ResNet50-mlperf ImageNet 76.44% 3940.45(bs64) bs x 3 x 256 x 256
100147 ResNet101 ImageNet 77.38% 93.56% 2548(bs8) bs x 3 x 256 x 256
100148 ResNetvd ImageNet 77.37% 93.77% 2823(bs32) bs x 3 x 224 x 224
100047 ResNeXt50 ImageNet 77.61% 3749(bs32) bs x 3 x 224 x 224
100149 SENet ImageNet 77.64% 93.74% 2479(bs32) bs x 3 x 224 x 224
100150 Se-ResNext101 ImageNet 78.24% 927.09(bs4) bs x 3 x 224 x 224
100151 SE-ResNet50 ImageNet 77.36% 93.76% 2690(bs32) bs x 3 x 224 x 224
100152 SE-ResNeXt50-32x4d ImageNet 79.06% 94.44% 1804.86(bs4) bs x 3 x 224 x 224
100153 ShiftViT ImageNet 79.3% 842.25(bs8) bs x 3 x 224 x 224
100154 ShuffleNetv2+ ImageNet 74.08% 91.67% 3595.13(bs32) bs x 3 x 224 x 224
100155 SimCLR CIFAR-10 65.55% 28070(bs32) bs x 3 x 32 x 32
100156 SkNet50 ImageNet 77.54% 2416(bs8) bs x 3 x 32 x 32
100157 SMLP ImageNet 81.25% 298.7(bs8) bs x 3 x 224 x 224
100158 SPACH ImageNet 81.5% 462.96(bs8) bs x 3 x 224 x 224
100159 SpnasNet100 ImageNet 74.19% 91.95% 8408(bs8) bs x 3 x 224 x 224
100062 SwinTransformer ImageNet 86.4% 98% 132(bs8) bs x 3 x 384 x 384
100160 SwinTransformer-tiny ImageNet 81.15% 95.42% 564.7(bs8) bs x 3 x 224 x 224
100161 T2T-ViT ImageNet 81.4% 194.66(bs8) bs x 3 x 224 x 224
100162 TimeSformer kinetics400 77.68% 7.53(bs1) 1 x 3 x 3 x 8 x 224 x 224
100163 TNT ImageNet 81.5% 274(bs8) bs x 196 x 16 x 24
100164 TResNet ImageNet 94.43% 3249(bs16) bs x 3 x 224 x 224
100165 Twins-PCPVT-S ImageNet 81.22% 613(bs16) bs x 3 x 224 x 224
100166 Twins-SVT-L ImageNet 83.7% 175.2209(bs8) bs x 3 x 224 x 224
100167 VAN ImageNet 82.78% 874(bs8) bs x 3 x 224 x 224
100067 VGG19 ImageNet 71.76% 90.80% 1153(bs64) bs x 3 x 224 x 224
100168 Video-SwinTransformer kinetics400 80.6% 94.5% 0.607(bs1) 1 x 12 x 3 x 32 x 224 x 224
100169 ViT-small ImageNet 81.37% 1013(bs8) bs x 3 x 224 x 224
100170 VOLO ImageNet 82.53% 124(bs8) bs x 3 x 224 x 224
100171 VoVNet39 ImageNet 76.77% 93.43% 1767(bs4) bs x 3 x 224 x 224
100172 Wide-ResNet101 ImageNet 78.86% 94.29% 1151(bs16) bs x 3 x 224 x 224
100173 Wide-ResNet50 ImageNet 78.48% 94.09% 2097(bs32) bs x 3 x 224 x 224
100174 Xception ImageNet 78.8% 94.2% 813(bs8) bs x 3 x 299 x 299
100175 XCIT ImageNet 81.86% 443(bs8) bs x 3 x 224 x 224

CV-detection

ID Name Dataset 精度 最优性能(对应bs) 输入shape
AP mAP DSC-score F1-score Top1Acc ODS loss 300I Pro
100176 3D-UNet Brats2018 25.6% 10.75(bs1) bs x 4 x 64 x 64 x 64
100177 AdvancedEAST 天池ICPR 52.08% 137(bs1) bs x 3 x 736 x 736
100178 AlphaPose coco 71.47% 1772(bs16) bs x 3 x 256 x 192
100179 BSN Activity1.3 74.34% 34617(bs16) TEM[bs, 400, 100]
PEM[bs, 3, 100]
100180 Cascade-MaskRcnn-SwinS coco 51.4% 3.17(bs1) 1 x 3 x 800 x 1216
100181 CascadeRCNN-DCN101 coco 45% 3(bs1) 1 x 3 x 1216 x 1216
100182 CascadeRCNN-R101-FPN coco 41.9% 9(bs1) 1 x 3 x 1216 x 1216
100009 CascadeRCNN-ResNet101-FPN-DCN coco 45% 3.8(bs1) 1 x 3 x 1216 x 1216
100183 CascadeRCNN-ResNet50-FPN coco 40.5% 6.5(bs1) 1 x 3 x 1216 x 1216
100184 CH-PPOCR-serverV2.0-det PaddleOCR 154(bs1) 多尺度
100185 CH-PPOCRV2-det PaddleOCR 232(bs1) 多尺度
100186 CH-PPOCRV3-det PaddleOCR 215(bs1) 1 x 3 x -1 x -1
100187 CRAFT 随机数 132(bs1) 1 x 3 x 640 x 640
100188 CTPN ICDAR2013 86.84% 169(bs64) 多尺度
100189 DeepMAR PETA 78.9% 1642(bs1) bs x 3 x 224 x 224
100190 EAST-MobileNetV3 ICDAR2015 78.29% 458(bs1) bs x 3 x 704 x 1280
100191 EAST-ResNet50-vd ICDAR2015 88.63% 91(bs1) bs x 3 x 704 x 1280
100192 EfficientDet-D7 coco 53% 6.18(bs1) bs x 3 x 1536x 1536
100193 EN-PPOCRV3-det PaddleOCR 168(bs1) 多尺度
100194 FairMOT MOT17 83.7% 12(bs32) bs x 3 x 608 x 1088
100029 FasterRCNN-DCN-Res101 coco 44.2% 2.47(bs1) 1 x 3 x 1216 x 1216
100195 FasterRCNN-DCN-Res50 coco 41.1% 8(bs1) 1 x 3 x 1216 x 1216
100030 FasterRCNN-ResNet50 coco 37.2% 14.84(bs1) 1 x 3 x 1216 x 1216
100196 FCENet icdar2015 87.2% 28.9(bs1) bs x 3 x 1280 x 2272
100197 Fcos coco 35.9% 65(bs4) bs x 3 x 800 x 1333
100198 FOTS ICDAR2015 86.4% 66(bs16) bs x 3 x1248 x 2240
100199 FSAF coco 37.1% 20(bs1) bs x 3 x 800 x 1216
100200 GFocalV2 coco 40.6% 41.8(bs4) bs x 3 x 800 x 1216
100201 M2Det coco 37.8% 65(bs4) bs x 3 x 512 x 512
100202 NAS-FPN coco 40.4% 72(bs1) 1 x 3 x 640 x 640
100203 NasNetlarge ImageNet 82.5% 175(bs4) bs x 3 x 331x 331
100204 Pelee VOC bs x 3 x 304 x 304
100205 PSE-MobileNetV3 ICDAR2015 82.14% 219(bs1) bs x 3 x 736 x 1312
100206 PSENet-ResNet50-vd ICDAR2015 85.72% 51(bs1) bs x 3 x 736 x 1312
100207 Pyramidbox widerface 95% 8.9(bs1) 1 x 3 x 1000 x 1000
100208 RCF BSDS500 79.8% 93(bs1) bs x 3 x 321 x 481
bs x 3 x 481 x 321
100209 RefineDet VOC2007 79.6% 445(bs16) bs x 3 x 320 x 320
100210 RetinaMask coco 27.9% 4.3(bs1) 1 x 3 x 1344 X 1244
100211 RetinaNet coco 38.3% 17(bs1) 1 x 3 x 224 x 224
100212 RFCN VOCtest 69.93% 16.52(bs1) 1 x 3 x 1344 X 1344
100213 SFA3D KITTI 0.603 426(bs4) bs x 3 x 608 X 608
100214 SSD-MobileNetV1 VOC2007 69.3% 3176(bs4) bs x 3 x 300 x 300
100215 SSD-MobileNetV2 VOC2007 69.8% 2923(bs4) bs x 3 x 300 x 300
100218 TextSnake TextSnake 59% 180.36(bs1) 1 x 3 x 512 x 512
100219 TOOD coco 42.2% 14.6(bs1) 1 x 3 x 1216 x 1216
100220 VGG16-SSD VOC 77.26% 751(bs16) bs x 3 x 300 x 300
100221 YOLOF coco 42.8% 126(bs16) bs x 3 x 608 x 608
100222 YOLOR coco 52.1% 40.9(bs8) bs x 3 x 1344 x 1344
100223 YOLOX-Tiny coco 33.1% 684(bs4) bs x 3 x 640 x 640
100224 YOLOXs coco 40.1% 890(bs4) bs x 3 x 640 x 640
100225 YOLOX-MMdetection coco 51% 77(bs64) bs x 3 x 640 x 640

CV-segmentation

ID Name Dataset 精度 最优性能(对应bs) 输入shape
Acc Liver 1_Dice AP mAP mIOU maxF MAE 300I Pro
100226 3D-HRNet Cityscapes 80.83% 9(bs1) bs x 3 x 1024 x 2048
100227 3D-Nested-UNet Task03_Liver 96.5% 3.98(bs1) 1 x 3 x 224 x 224
100228 Cascade-MaskRCNN coco 36.29% 18(bs1) 1 x 3 x 1344 x 1344
100229 Cascade-MaskRCNN-UniFormer coco 72% 3(bs1) 1 x 3 x 800 x 1216
100230 CascadeRCNN coco 44.2% 9(bs1) 1 x 3 x 1344 x 1244
100015 DeeplabV3+ VOCtrainval 78.43% 165(bs1) bs x 3 x 513 x 513
100231 ENet Cityscapes 54.11% 1327(bs4) bs x 3 x 480x 480
100232 ErfNet Cityscapes 72.2% 381(bs8) bs x 3 x 512 x 1024
100233 FastSCNN Cityscapes 68.6% 39(bs1) bs x 3 x 1024 x 2048
100234 FCN-8s VOC2012 69.01% 84(bs1) 1 x 3 x 500 x 500
100235 GCNet coco 61% 13(bs1) 1 x 3 x 800 x 1216
100236 ICNet Cityscapes 68.9% 32(bs8) bs x 3 x 1024 x 2048
100237 IntraDA Cityscapes 47.01% 47(bs1) bs x 3 x 512 x 1024
100238 LPRNet 代码仓提供 90.2% 27313(bs32) bs x 3 x 24 x 94
100239 MaskRcnn-MMdet coco 59% 11(bs1) 1 x 3 x 1216 x 1216
100240 Nested-UNet coco 83.8% 2623(bs4) bs x 3 x 96 x 96
100241 OCRNet Cityscapes 79.63% 13(bs1) bs x 3 x 1024 x 1024
100242 PointRend Cityscapes 78.85% 1.27(bs1) 1 x 3 x 1024 x 2048
100243 PraNet kvasir 83.6% 425(bs4) bs x 3 x 352 x 352
100244 PSPNet VOC2012 76.18% 67.8(bs16) bs x 3 x 500x 500
100245 RefineNet VOC2012 78.6% 87(bs1) bs x 3 x 500 x 500
100246 Segformer Cityscapes 75.94% 10.65(bs4) bs x 3 x 1024 x 2048
100247 Segmenter Cityscapes 78.89% 3.4(bs1) bs x 3 x 768 x 768
100248 SeMask Cityscapes 76.54% 4.7(bs1) bs x 3 x 1024 x 2048
100249 SETR Cityscapes 77.35% 3.4(bs1) 1 x 3 x 768 x 768
100250 SiamMask VOT2016 42.7% 302(bs1) 多尺度
100251 SOLOV1 coco 32.1% 10(bs1) 1 x 3 x 800 x 1216
100252 STDC Cityscapes 71.81% 27(bs1) 1 x 3 x 1024 x 2048
100253 Swin97 ADE20K 44.78% 21(bs1) bs x 3 x 512 x 512
100254 Swin98 ADE20K 47.92% 16(bs1) bs x 3 x 512 x 512
100255 Swin99 ADE20K 48.29% 14(bs1) bs x 3 x 512 x 512
100256 Swin100 ADE20K 48.74% 14(bs1) bs x 3 x 512 x 512
100257 SwinTransformer-Semantic-Segmentation ADE20K 48.06% 19(bs1) 1 x 3 x 512 x 512
100258 Transformer-SSL coco 68.8% 4(bs1) 1 x 3 x 800 x 1216
100066 U2Net ECSSD 94.8% 0.033 240(bs1) bs x 3 x 320 x 320
100259 Ultra-Fast-Lane-Detection Tusimple 95.8% 2254(bs32) bs x 3 x 288 x 800
100260 VNet LUNA16 99.4% 44(bs1) bs x 64 x 80 x 80
100261 Wseg VOC 62.7% 5(bs1) bs x 3 x 1020 x 1020
100262 YOLACT coco 32.07% 163(bs1) bs x 3 x 550 x 550
100263 YOLACTEdge coco 27.96% 270(bs1) bs x 3 x 550 x 550
100264 YOLACT++ coco 34.9% 31(bs8) bs x 3 x 550 x 550

CV-face

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Acc mAP
100265 AlignedReID Market1501 80.55% 5293(bs32) bs x 3 x 256 x 128
100266 Centroids-ReID DukeMTMC-reID 96.8% 4287(bs8) bs x 3 x 256 x 128
100267 FaceBoxes FDDB 94.8% 2332(bs1) bs x 3 x 224 x 224
100268 FaceNet LFW 99.2% 7964(bs16) bs x 3 x 160 x 160
100269 ReID-PCB-baseline Market 92.1% 2031(bs16) bs x 3 x 384 x 128
100270 ReId-MGN Market 94.23% 1519(bs8) bs x 3 x 384 x 128
100271 Retinaface WiderFace 87.56% 1502(bs16) bs x 3 x 1000 x 1000

CV-gan

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
IS FID Acc
100272 BigGAN 噪声数据 94.009 10 544(bs16) bs x 1 x 20
bs x 5 x 148
100273 CGAN 随机数 1935(bs1) 1 x 100 x 72
100274 CycleGAN maps CycleGAN_Ga 1
CycleGAN_Gb 0.99
CycleGAN_Ga 231(bs64)
CycleGAN_Gb 232(bs64)
bs x 3 x 256 x 256
100275 DCGAN 噪声数据 1 108781(bs32) bs x 100 x 1 x 1
100276 DGNet Market-1501 18.12 584(bs8) bs x 1 x 256 x 128
bs x 3 x 256 x 128
100277 GAN 随机数 496239(bs64) bs x 100
100278 Pix2Pix facades 963(bs32) bs x 3 x 256 x 256
100279 Pix2PixHD cityscapes 5(bs1) bs x 36 x 1024 x 2048

CV-image_process

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
PSNR
100280 CrossScale-NonLocal-Attention Set5 32.57 0.71(bs1) 1 x 3 x 56 x 56
100281 DnCNN dncnn 31.53 166(bs16) bs x 1 x 481 x 481
100282 SRFlow DIV2K 23 0.7(bs1) 1 x 3 x 256 x 256
100283 WDSR DIV2K 34.75 13(bs1) bs x 3 x 1020 x 1020

CV-image_registration

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Acc
100284 SuperPoint HPatches 80.6% 2528(bs8) bs x 1 x 240 x 320

CV-image_retrieval

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
mAP
100285 BLIP coco 81.3% text:1662(bs64)
image:72(bs1)
image_feat:73(bs1)
text:bs x 35
image:bs x 3 x 384 x 384
image_feat:bs x 3 x 384 x 384

CV-pose_estimation

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Top1Acc Top5Acc AP MPJPE
100286 3DMPPE-RootNet MuPoTS 31.81% 1565(bs4) bs x 3 x 224 x 224
bs x 1
100287 DEKR coco 67.7% 7.72(bs1) 多尺度
100288 HigherHRNet coco 67.1% 185(bs1) 多尺度
100289 HRNet-MMLab coco 65.3% 151(bs1) 多尺度
100290 MSPN coco 74.1% 933(bs4) bs x 3 x 256 x 192
100291 PoseC3D HMDB51 69.22% 91.31% 22.3(bs8) bs x 20 x 17 x 48 x 56 x 56
100292 TransPose coco 73.7% 500(bs4) bs x 3 x 256 x 192
100293 UniFormer coco 93.5% 295(bs8) bs x 3 x 256 x 192
100294 VideoPose3D Human3.6M 46.6 280257(bs2) 2 x 6115 x 17 x 2

CV-quality_enhancement

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
ACC PSNR SSIM
100295 ADNet BSD68 29.24% 215(bs64) bs x 1 x 321 x 481
100296 SRGAN Set5 33.4391 93.08% 380(bs8) bs x 3 x 140 x 140

CV-super_resolution

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
PSNR SSIM
100297 FLAVR UCF101 29.83 94.46% 77(bs16) bs x 3 x 224 x 224
100298 RCAN Set5 38.25 96.06% 12(bs1) bs x 3 x 256 x 256
100299 RDN Set5 38.27 47(bs1) bs x 3 x 114 x 114
100300 Real-ESRGAN 代码仓提供 251(bs4) bs x 3 x 220 x 220
bs x 3 x 64 x 64
100301 SRCNN Set5 36.33 2361(bs1) bs x 1 x 256 x 256

CV-tracking

ID Name Dataset 精度 最优性能(对应bs) 输入shape
success_score precision_score Acc EPE MAPE 300I Pro
100302 FlowNet2 MPI-Sintel-complete 2.15 14(bs1) bs x 3 x 448 x 1024
100303 SiamFC OTB2015 57.2% 76.2% exemplar_bs1:6072(bs1)
search_bs1:948(bs1)
1 x 3 x 255 x 255
1 x 9 x 127 x 127
100054 SiamRPN VOT 63.9% 42(bs1) 1 x 3 x 127 x 127
1 x 3 x 255 x 255
100304 GMA MPI-Sintel-complete final:88.95%
clean:92.65%
0.77(bs4) 1 x 3 x 440 x 1024
100305 DeepCTR 代码仓提供 WDL:2.147
xDeepFM:1.97
AutoInt:2.14
WDL:0.079(bs40)
xDeepFM:0.177(bs40)
AutoInt:0.22(bs40)
40 x 6

CV-video_understanding

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
ADK MKR Top1Acc Top5Acc
100306 FOMM taichi 6.7975 0.036 kp detector:957(bs1)
generator:7(bs1)
kp detecto:1 x 3 x 256 x 256
generator:多尺度
100307 I3D-Nonlocal kinetics400 70.03% 89.51% 14.39(bs1) bs x 10 x 3 x 32 x 256 x 256
100308 NonLocal kinetics400 71.62% 90.27% 97(bs1) bs x 3 x 8 x 224 x 224
100309 SlowFast kinetics400 70.07% 88.55% 138(bs1) bs x 3 x 32 x 224 x 224
100310 TSM UCF-101 94.48% 99.63% 194(bs1) bs x 8 x 3 x 224 x 224
100311 TSN UCF-101 82.83% 22.19(bs32) bs x 75 x 3 x 256 x 256
100312 X3D Kinetic400 73.75% 90.25% 386(bs8) bs x 3 x 13 x 182 x 182

Audio

ID Name Dataset 精度 最优性能(对应bs) 输入shape
EER WER ROC_AUC mel_loss 300I Pro
100313 AASIST-L LA 0.979 168(bs64) 1 x 64600
100314 Data2Vec LibriSpeech 0.94 11(bs1) bs x 559280
100021 Ecapa-TDNN VoxCeleb1 0.9991 1654(bs4) bs x 80 x 200
100031 FastPitch LJSpeech 11.33 126(bs8) bs x 200
100315 Jasper LibriSpeech 9.709 41(bs1) bs x 64 x 4000
100316 LSTM timit 18.9075 83.4(bs64) bs x 390 x 243
100317 RawNet2 VoxCeleb1 2.5% 77(bs16) bs x 59049
100318 Speech-Transformer aishell 9.9% 0.82(bs1) 多尺度
100319 TDNN-contrib librispeech 98.69% 1562(bs16) 多尺度
100071 Wav2Vec2 librispeech 2.96% 157(bs16) bs x 10000
100320 WaveGlow LJSpeech 3(1 x 80 x 154) 多尺度
100321 WeNet aishell 4.68% 154.8(bs1) 多尺度
100321 whisper librispeech_asr_dummy 8.21% 67.32(bs1) bs x 80 x 3000

Knowledge

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
MRR
100322 RotatE FB15k-237 0.3355 head:222(bs64)
tail:222(bs64)
bs x 3
bs x 14541

Embedding

ID Name 最优性能(对应bs) 输入shape
300I DUO 800I A2
100410 bge-m3 forward 23.23ms, e2e 137.59ms (bs2) forward 14.71ms, e2e 103.88ms (bs2) 动态输入
100411 bge-reranker-v2-m3 forward 22.57ms, e2e 60.47ms (bs2) forward 15.08ms, e2e 46.64ms (bs2) 动态输入

Nlp

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Acc WER loss BLEU F1 bpc
100005 BertBase-Uncased squad 88.78% 221(bs4) bs x 512
100323 BertSum 代码仓提供 42.85% 138.09(bs8) bs x 512
bs x 37
100324 CH-PPOCR-serverV2.0-rec PaddleOCR 289(bs1) 多尺度
100325 CH-PPOCRV2-rec PaddleOCR 260(bs1) 多尺度
100326 CH-PPOCRV3-rec PaddleOCR 1411(bs1) 多尺度
100327 CNN-Transformer Librispeech 0.0556 52(bs1) 多尺度
100328 DeBERTa MNLI 90.46% 5(bs64) bs x 256
100329 ELMO 1 Billion Word 62(bs1) 1 x 8 x 50
100330 EN-PPOCRV3-rec PaddleOCR 6144(bs16) bs x 3 x 48 x 320
100331 GPT2 wiki_zh_2019 16.5 189(bs16) bs x 512
100332 GNMT newstest2014 22.69 24(bs1) 1 x 1
1 x 30
100333 HuBERT test-clean 2.13 3(bs1) 1 x 580000
100334 RARE-ResNet34-vd LMDB 84.79% 1603(bs32) bs x 3 x 32 x 100
100335 Rosetta-MobileNetV3 LMDB 77.38% 24219(bs64) bs x 3 x 32 x 100
100336 Rosetta-ResNet34-vd LMDB 80.63% 7418(bs16) bs x 3 x 32 x 100
100337 SATRN IIIT5K 94.87% 31(bs1) 1 x 3 x 32 x 100
100338 SpanBERT SQuAD 1.1 93.95% 43(bs1) bs x 512
100339 StarNet-MobileNetV3 LMDB 80.02% 2617(bs64) bs x 3 x 32 x 100
100341 TinyBERT SST-2 92.32% 11160(bs64) bs x 4 x 84 x 84
100342 Transformer Multi30k 40.92% 48(bs1) 1 x 15
100343 TransformerXL enwik8 1.966 287(bs1) 80 x 1
160 x 1 x 512
100344 TrOCR IAM 4.25 8(bs1) 1 x 3 x 384 x 384
100345 VilBERT coco 0.67 493(bs32) 多尺度

RL

ID Name Dataset 精度 300I Pro最优性能(对应bs) 输入shape
Acc
100346 C51 随机数 98.9% 6050(bs1) 1 x 4 x 84 x 84
100347 DQN 随机数 100% 8147(bs1) 1 x 4 x 84 x 84
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/ModelZoo-PyTorch.git
git@gitee.com:ascend/ModelZoo-PyTorch.git
ascend
ModelZoo-PyTorch
ModelZoo-PyTorch
master

搜索帮助