为方便更多开发者体验和使用昇腾芯片澎湃推理算力,该目录下提供了经典和主流算法模型实现昇腾服务器推理的端到端流程,更多模型持续更新中。如果您有任何需求,请在modelzoo/issues提交issue,我们会及时处理。如果您希望适配您的自定义模型,我们同时提供在昇腾设备上自行适配模型的ONNX推理流程。
在开始贡献之前,请先阅读CONTRIBUTING。 谢谢!
目前ACL_PyTorch仓库已有模型398个
注意:
在提交新模型时,请加上模型ID用于区分,为防止重复提交模型,请执行脚本get_modelID.py,该脚本会自动检索ACL_PyTorch仓库中所有与您提交模型相关的已有模型,请自行查看脚本给出的链接,如果均不同,则可以输入1或true用于获取模型ID。由于该脚本使用正则匹配,后续新模型刷新到主页需要添加README内容时,格式请参考其余模型,并且同步刷新上文模型数量。脚本执行方式如下:
python3 get_modelID.py --model your_model_name参数说明:
--model:请输入您所需提交新模型的简称,比如Conformer-base模型,您可以输入conformer用于检索所有相关模型(大小写不敏感)
说明:
以下无精度指标的模型均需人工与在线推理结果比较
因使用版本差异,模型性能可能存在波动,性能仅供参考
CV-classfication
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | ||
---|---|---|---|---|---|---|---|
Top1Acc | Top5Acc | mAP | |||||
100007 | Big-Transfer | CIFAR-10 | 97.62% | 1758.00(bs16) | bs x 3 x 128 x 128 | ||
100008 | C3D | UCF101 | 81.87% | 54.92(bs4) | bs x 10 x 3 x16 x 112 x 112 | ||
100019 | DenseNet121 | ImageNet | 74.43% | 91.96% | 2195(bs8) | bs x 3 x 224 x 224 | |
100033 | GaitSet | CASIA-B | 95.512% | 723(bs64) | bs x 100 x 64 x 44 | ||
100037 | InceptionV3 | ImageNet | 77.31% | 93.46% | 2388(bs8) | bs x 3 x 299 x2 99 | |
100038 | MaskRcnn | coco | 53.7149% | 22.06(bs1) | 1 x 3 x 1344 x 1344 | ||
100039 | MobileNetV1 | ImageNet | 69.52% | 89.05% | 13990(bs32) | bs x 3 x 224 x 224 | |
100041 | MobileNetV2 | ImageNet | 71.87% | 90.32% | 7072(bs4) | bs x 3 x 224 x 224 | |
100040 | MobileNetV3 | ImageNet | 65.094% | 85.432% | 15442.12(bs32) | bs x 3 x 224 x 224 | |
100075 | RegNetX-1.6GF | ImageNet | 76.93% | 93.43% | 5426.759(bs8) | bs x 3 x 224 x 224 | |
100044 | RepVGG | ImageNet | 72.15% | 90.4% | 8929(bs32) | bs x 3 x 224 x 224 | |
100076 | ResNeSt50 | ImageNet | 80.98% | 1704(bs4) | bs x 3 x 224 x 224 | ||
100077 | ResNext101-32x8d | ImageNet | 79.312% | 94.526% | 1251(bs8) | bs x 3 x 224 x 224 | |
100078 | SCNet | ImageNet | 80.34% | 2135(bs4) | bs x 3 x 224 x 224 | ||
100053 | ShuffleNetV1 | ImageNet | 67.71% | 7847(bs16) | bs x 3 x 224 x 224 | ||
100052 | ShuffleNetV2 | ImageNet | 69.33% | 88.34% | 7736(bs32) | bs x 3 x 224 x 224 | |
100079 | SqueezeNet1 | ImageNet | 57.32% | 80.06% | 21301(bs8) | bs x 3 x 224 x 224 | |
100068 | VGG16 | ImageNet | 71.28% | 90.38% | 1424(bs16) | bs x 3 x 224 x 224 | |
100070 | ViT | ImageNet | 80.63%(patch32_224) | 1679.63(patch32_224 bs64) | bs x 3 x 224 x 224 | ||
100401 | Chinese-CLIP | 33ms(img,bs20) | 20 x 3 x 224 x 224 |
CV-detection
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 800I A2最优性能(对应bs) | 输入shape | ||
---|---|---|---|---|---|---|---|---|
AP | mAP | Acc | ||||||
100080 | CascadeRCNN-DCN | coco | 43.8% | 3.9(bs1) | 1 x 3 x 1216 x 1216 | |||
100010 | CenterFace | WIDER_FACE | hard:74.55% easy:92.24% Medium:91.02% |
439.9(bs1) | bs x 3 x 800 x 800 | |||
100011 | CenterNet | coco | 36.4% | 34.1(bs4) | bs x 3 x 512 x 512 bs x 3 x 800 x 800 |
|||
100012 | CRNN-BuildIn | IIIT5K_lmdb | 74.87% | 17815(bs64) | bs x 1 x 32 x 100 | |||
100083 | DBNet-MobileNetV3 | ICDAR2015 | 77.5% | 196(bs1) | bs x 736 x 1280 x 3 | |||
100020 | DETR | coco | 41.6% | 63.75(bs1) | 多尺度 | |||
100023 | EfficientDet-D0 | coco | 33.4% | 260(bs4) | bs x 3 x 512 x 512 | |||
100024 | EfficientNet-B0 | ImageNet | 75.088%(top1) | 2489(bs8) | bs x 3 x 224 x 224 | |||
100042 | OpenPose | coco | 40.4% | 887.45(bs4) | bs x 3 x 368 x 6406 | |||
100043 | PSENet | ICDAR2015 | acc:80.5% recall:63.9% |
70(bs1) | bs x 3 x 704 x 1216 | |||
100084 | RetinaNet-r50-fpn | coco | 36.3% | 15.48(bs1) | 1 x 3 x 1216 x 1216 | |||
100048 | RetinaNet-ResNet18 | coco | 31.6% | 50(bs1) | 1 x 3 x 1216 x 1216 | |||
100057 | SSD | coco | 25.4% | 337.01(bs4) | bs x 3 x 300 x 300 | |||
100056 | SSD-ResNet34 | coco | 23% | 1324(bs8) | bs x 3 x 300 x 300 | |||
100085 | YOLOV3 | coco | 63.30% | 219(bs4) | bs x 3 x 640 x 640 | |||
100072 | YOLOV4 | coco | 60.3% | 171.15(bs8) | bs x 3 x 416 x 416 | |||
100073 | YOLOV5s2.0 | coco | 55.3% | 998.004(bs4) | bs x 3 x 640 x 640 | |||
100074 | YOLOV5s6.0 | coco | 55.9% | 737.04(bs4) | bs x 3 x 640 x 640 | |||
100086 | YOLOX | coco | 51.2% | 77.4(bs64) | bs x 3 x 640 x 640 | |||
100399 | GLIP | coco | 46.3% | 0.62(bs1) | bs x 3 x H x W | |||
100400 | GLIP_STATIC | 227.43ms(bs1) | 1 x 3 x 784 x 1344 | |||||
100404 | InternImage_Detection | coco | box: 55.6% seg: 48.6% |
1614ms(bs1) | 1 x 3 x 1216 x 1216 | |||
100406 | GroundingDINO | coco | 52.4% | 1378ms(bs1) | 877ms(bs1) | 多尺度 |
CV-segmentation
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |
---|---|---|---|---|---|---|
Acc | mIoU | |||||
100016 | DeeplabV3 | Cityscapes | 79.12% | 4.9(bs1) | 1 x 3 x 1024 x 2048 | |
100055 | SOLOV2 | coco | 34% | 22(bs1) | 1 x 3 x 800 x 1216 | |
100088 | UNet | carvana | 98.6% | 75(bs1) | bs x 3 x 572 x 572 | |
100405 | InternImage_Segmentation | ADE20K | aAcc: 86.55% mAcc: 71.8% |
59.54% | 2067ms(bs1) | 多尺度 |
CV-gan
ID | Name | Dataset | 精度 | 最优性能(对应bs) | 输入shape | |
---|---|---|---|---|---|---|
300I Pro | ||||||
100059 | StarGAN | celeba | 1186(bs8) | bs x 3 x 128 x 128 bs x 5 |
||
100061 | StyleGAN2-ADA | 代码仓提供 | 39.81(bs1) | 1 x 512 |
CV-pose_estimation
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |
---|---|---|---|---|---|---|
Top1Acc | Top5Acc | |||||
100036 | HRNet | ImageNet | 76.46% | 93.14% | 2036(bs16) | bs x 3 x 224 x 224 |
100060 | STGCN | Kinetics | 31.59% | 53.74% | 381(bs1) | bs x 3 x 300 x 18 x 2 |
100407 | MuseTalk | 代码仓提供 | 229s(8bs) | 多尺度 |
CV-super_resolution
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
PSNR | |||||
100022 | EDSR | DIV2K | 34.6 | 7.9(bs1) | bs x 3 x 1020 x 1020 |
100089 | EDSR-Dynamic | B100 | 32.35 | 6.9(H:240, W:320) | 多尺度 |
CV-tracking
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
Acc | |||||
100017 | Deepsort | MOT16 | 30.0% | yolov3:464.29(bs1) deep:2950(bs1) |
bs x 3 x 416 x 416 |
100090 | T2Vec | Proto | (精度数据参考链接) | 9.85ms | 动态输入 |
CV-image_registration
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |
---|---|---|---|---|---|---|
Auc@20 | Precision | |||||
100091 | SuperGlue-SuperPoint | YFCC100M | 74.72% | 97.80% | 1.4(e2e) | 1 x 1 x 1200 x 1600 |
CV-video_understanding
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |
---|---|---|---|---|---|---|
Top1Acc | Top5Acc | |||||
100092 | TSM-SthV2 | sthv2 | 61.87% | 87.21% | 20.77(bs1) | bs x 48 x 3 x 256 x 256 |
Audio
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 800I A2最优性能(对应bs) | 输入shape | ||
---|---|---|---|---|---|---|---|---|
WER | CER | Acc | ||||||
100018 | DeepSpeech2 | an4 | 9.573 | 5.515 | 7.74(bs32) | bs x 1 x 161 x 621 bs x 1 |
||
100027 | EspNet | 代码仓提供 | 430(分档) | 多尺度 | ||||
100032 | FastSpeech2 | LJSpeech | 13.66(bs1) | 多尺度 | ||||
100035 | HiFiGAN | LJSpeech | 637(bs8 mel_len:250) | 多尺度 | ||||
100063 | Tacotron2 | LJSpeech | 33508(bs16) | 多尺度 | ||||
100064 | TDNN-buildin | Mini Librispeech | 99.93% | 1358(bs4) | bs x 1800 x 24 | |||
100093 | Conformer | aishell | 95.04% | 60 | 多尺度 | |||
100402 | SenseVoice | 代码仓提供 | 80ms(bs1) | 40ms(bs1) | 多尺度 | |||
100403 | CosyVoice | 代码仓提供 | 2.0s(rtf) | 0.3s(rtf) | 多尺度 |
Nlp
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
Acc | |||||
100001 | ALBERT | SST-2 | 92.8% | 1350(bs16) | bs x 128 |
100094 | BertBase-Cased-SST2 | SST-2 | 92.43% | 2906(bs32) | bs x 128 bs x 64 |
100003 | Bert-Base-CH | zhwiki | 77.94% | 254(bs8) | bs x 384 |
100340 | TextCNN | THUCNews | top1acc:90.47% top5acc:99.35% |
29237(bs64) | bs x 32 |
100095 | Bert-Uncased-Huggingface | SQuAD 1.1 | F1:88.2% EM:80.84% |
328.64(bs4) | bs x 384 |
100026 | Ernie3 | Clue | 49% | 1313(bs8) | bs x 128 |
100096 | M2M100 | sacrebleu | encoder:224.376(bs1) der_first_step:82.827(bs1) decoder:141.6(bs1) |
1 x 90 | |
100050 | RoBERTa | SST-2 | 94.8% | 1473(bs32) | bs x 70 |
100051 | SAST | ICDAR | 91.3% | 22(bs1) | bs x 3 x 896 x 1536 |
100006 | BiLSTM-CRF | CLUE_NER | acc=73.5% recall=69.3% f1=71.4% |
961(bs32) | ids:bs,50;mask:bs,50 |
100348 | Uie_for_PyTorch | doccano(paddle) | f1=100% | 1334.26(bs16) | input_ids:bsx512;token_type_ids:bsx512;position_ids:bsx512;attention_mask:bsx512 |
100349 | Pet_for_PyTorch | eprstmt | f1=88.5% | 342.79(bs8) | bs x 128;bs x 128;bs x 128;bs x 1 x 1 x 128 |
OCR
ID | Name | Dataset | 精度 | 最优性能(对应bs) | 输入shape | |||
---|---|---|---|---|---|---|---|---|
Top1Acc | Top5Acc | mAP | 300I Pro | |||||
100082 | CRNN-ocr | 原仓自带的数据集 | 78.37% | 7969(bs64) | bs x 1 x 32 x 160 | |||
100087 | DBNET-ocr | icdar2015 | 88% | 19(bs16) | bs x 3 x 736 x 1280 |
CV-classfication
ID | Name | Dataset | 精度 | 最优性能(对应bs) | 输入shape | |||
---|---|---|---|---|---|---|---|---|
Top1Acc | Top5Acc | mAP | 300I Pro | |||||
100098 | 3D-AttentionNet | CIFAR-10 | 62.2% | 7806.96(bs16) | bs x 3 x 32 x 32 | |||
100099 | 3D-ResNets | hmdb51 | 62.22% | 830.7165(bs10) | 10 x 3 x 16 x 112 x 112 | |||
100100 | AlexNet | ImageNet | 56.56% | 79.1% | 12672(bs64) | bs x 3 x 224 x 224 | ||
100101 | Dino-ResNet50-baseline | ImageNet | 75.28% | 92.56% | 87537(bs64) | bs x 3 x 224 x 224 | ||
100102 | BMN | Activity1.3 | 67.69% | 114.34(bs1) | bs x 400 x 100 | |||
100103 | BEIT | ImageNet | 84.68% | 516.00(bs8) | bs x 3 x 224 x 224 | |||
100104 | CH-PPOCR-MobileNetV2.0 | PaddleOCR | 31958.773(bs64) | bs x 3 x 48 x 192 | ||||
100105 | Conformer-base | ImageNet | 83.85% | 257.7437(bs8) | bs x 3 x 224 x 224 | |||
100106 | Conformer-Ti | ImageNet | 81.09% | 907.58(bs8) | bs x 3 x 224 x 224 | |||
100107 | ConvMixer | ImageNet | 81.37% | 102.9(bs1) | bs x 3 x 224 x 224 | |||
100108 | ConvNext | ImageNet | 82.094% | 461.9(bs8) | bs x 3 x 224 x 224 | |||
100109 | CSPResNeXt50 | ImageNet | 79.79% | 3251(bs4) | bs x 3 x 224 x 224 | |||
100110 | CSWin-Transformer | ImageNet | 83.3% | 223.5(bs16) | bs x 3 x 224 x 224 | |||
100111 | Deit-Small | ImageNet | 79.5% | 94.83% | 415(bs1) | bs x 3 x 224 x 224 | ||
100112 | DPN131 | ImageNet | 79.47% | 94.54% | 550(bs4) | bs x 3 x 224 x 224 | ||
100013 | CRNN-Meijieru | demo文件 | 19374(bs64) | bs x 1 x 32 x 100 | ||||
100113 | Efficient-3DCNNs | UCF-101 | 81.073% | 96.325% | 1245.1167(bs4) | bs x 3 x 16 x 112 x 112 | ||
100114 | EfficientNet-B1 | ImageNet | 75.940% | 92.774% | 1409.692(bs8) | bs x 3 x 240 x 240 | ||
100115 | EfficientNet-B3 | ImageNet | 76.25% | 92.56% | 739.02(bs16) | bs x 3 x 300 x 300 | ||
100116 | EfficientNet-B5 | ImageNet | 77.2% | 92.8% | 166.408(bs64) | bs x 3 x 456 x 456 | ||
100117 | EfficientNet-B7 | ImageNet | 84.4% | 75.9(bs32) | bs x 3 x 600 x 600 | |||
100025 | EfficientNet-V2 | ImageNet | 82.26% | 1670(bs64) | bs x 3 x 288 x 288 | |||
100118 | FixRes | ImageNet | 79.0% | 984(bs4) | bs x 3 x 224 x 224 | |||
100119 | FocalTransformer | ImageNet | 83.586% | 7.96(bs1) | bs x 3 x 224 x 224 | |||
100120 | GENet | CIFAR-10 | 94.23% | 9981(bs16) | bs x 3 x 32 x 32 | |||
100121 | GhostNet1.0x | ImageNet | 73.98% | 4974(bs8) | bs x 3 x 224 x 224 | |||
100122 | GloRe | UCF101 | 92.12% | 99.56% | 85(bs4) | bs x 3 x 8 x 224 x 224 | ||
100123 | GoogleNet | ImageNet | 69.78% | 89.53% | 6308.38(bs8) | bs x 3 x 8 x 224 x 224 | ||
100124 | HRNet-Image-Classification | ImageNet | 76.51% | 93.22% | 1986(bs16) | bs x 3 x 224 x 224 | ||
100125 | InceptionResNetV2 | ImageNet | 80.15% | 95.24% | 1310.5(bs8) | bs x 3 x 299 x 299 | ||
100126 | InceptionV4 | ImageNet | 79.99% | 94.86% | 1498.5(bs4) | bs x 3 x 299 x 299 | ||
100127 | LResNet100E-IR | LFW | 99.7% | 1432(bs16) | 746(bs16) | bs x 3 x 112 x 112 | ||
100128 | LV-Vit | ImageNet | 83.3% | 407.14(bs8) | bs x 3 x 224 x 224 | |||
100129 | MAE | ImageNet | 83.52%% | 266.8(bs1) | bs x 3 x 224 x 224 | |||
100130 | MnasNet | ImageNet | 73.48% | 10650.988(bs16) | bs x 3 x 224 x 224 | |||
100131 | MobileNetV3-large | ImageNet | 75.62% | 92.47% | 6998.89(bs16) | bs x 3 x 224 x 224 | ||
100132 | MOCOV2 | ImageNet | 67.28% | 87.82% | 3288.38(bs4) | bs x 3 x 224 x 224 | ||
100133 | OSNet | Market-1501 | 82.55% | 4075(bs8) | bs x 3 x 256 x 128 | |||
100134 | PAMTRI | veri | 68.64% | 1564.274(bs4) | bs x 3 x 256 x 256 | |||
100135 | PnasNet5large | ImageNet | 81.76% | 203.256(bs4) | bs x 3 x 331 x 331 | |||
100136 | PointNet | shapenetcore | 97.35% | 2374.11(bs1) | bs x 3 x 2500 | |||
100137 | PointNetCNN | modelnet40 | 82.82% | 273(bs1) | 1 x 1024 x 3 | |||
100138 | PointNet+ | modelnet40 | 88.4% | partone7825(bs4) parttwo5127(bs1) | partone[bs, 512, 3] [bs, 3, 32, 512] parttwo[bs, 3, 128] [bs, 131, 64, 128] |
|||
100139 | R(2+1)D | UCF-101 | 89.23% | 97.45% | 84.7777(bs32) | bs x 3 x 224 x 224 | ||
100140 | ReID | Market1501 | 85.9% | 4417.628(bs16) | bs x 3 x 256 x 128 | |||
100141 | RegNetY-1.6GF | ImageNet | 77.86% | 93.72% | 4417.628(bs16) | bs x 3 x 224 x 224 | ||
100142 | Res2Net101-v1b | ImageNet | 81.22% | 95.36% | 347(bs32) | bs x 3 x 224 x 224 | ||
100143 | ResNet152 | ImageNet | 78.31% | 94.05% | 1844(bs8) | bs x 3 x 256 x 256 | ||
100144 | ResNet34 | ImageNet | 73.31% | 91.44% | 5455(bs16) | bs x 3 x 224 x 224 | ||
100145 | ResNet50-MMLab | cifar100 | 79.9% | 9329(bs16) | bs x 3 x 32 x 32 | |||
100045 | ResNet18 | ImageNet | 69.75% | 89.10% | 9828(bs128) | bs x 3 x 256 x 256 | ||
100046 | ResNet50 | ImageNet | 76.14% | 92.87% | 4250(bs64) | bs x 3 x 256 x 256 | ||
100146 | ResNet50-mlperf | ImageNet | 76.44% | 3940.45(bs64) | bs x 3 x 256 x 256 | |||
100147 | ResNet101 | ImageNet | 77.38% | 93.56% | 2548(bs8) | bs x 3 x 256 x 256 | ||
100148 | ResNetvd | ImageNet | 77.37% | 93.77% | 2823(bs32) | bs x 3 x 224 x 224 | ||
100047 | ResNeXt50 | ImageNet | 77.61% | 3749(bs32) | bs x 3 x 224 x 224 | |||
100149 | SENet | ImageNet | 77.64% | 93.74% | 2479(bs32) | bs x 3 x 224 x 224 | ||
100150 | Se-ResNext101 | ImageNet | 78.24% | 927.09(bs4) | bs x 3 x 224 x 224 | |||
100151 | SE-ResNet50 | ImageNet | 77.36% | 93.76% | 2690(bs32) | bs x 3 x 224 x 224 | ||
100152 | SE-ResNeXt50-32x4d | ImageNet | 79.06% | 94.44% | 1804.86(bs4) | bs x 3 x 224 x 224 | ||
100153 | ShiftViT | ImageNet | 79.3% | 842.25(bs8) | bs x 3 x 224 x 224 | |||
100154 | ShuffleNetv2+ | ImageNet | 74.08% | 91.67% | 3595.13(bs32) | bs x 3 x 224 x 224 | ||
100155 | SimCLR | CIFAR-10 | 65.55% | 28070(bs32) | bs x 3 x 32 x 32 | |||
100156 | SkNet50 | ImageNet | 77.54% | 2416(bs8) | bs x 3 x 32 x 32 | |||
100157 | SMLP | ImageNet | 81.25% | 298.7(bs8) | bs x 3 x 224 x 224 | |||
100158 | SPACH | ImageNet | 81.5% | 462.96(bs8) | bs x 3 x 224 x 224 | |||
100159 | SpnasNet100 | ImageNet | 74.19% | 91.95% | 8408(bs8) | bs x 3 x 224 x 224 | ||
100062 | SwinTransformer | ImageNet | 86.4% | 98% | 132(bs8) | bs x 3 x 384 x 384 | ||
100160 | SwinTransformer-tiny | ImageNet | 81.15% | 95.42% | 564.7(bs8) | bs x 3 x 224 x 224 | ||
100161 | T2T-ViT | ImageNet | 81.4% | 194.66(bs8) | bs x 3 x 224 x 224 | |||
100162 | TimeSformer | kinetics400 | 77.68% | 7.53(bs1) | 1 x 3 x 3 x 8 x 224 x 224 | |||
100163 | TNT | ImageNet | 81.5% | 274(bs8) | bs x 196 x 16 x 24 | |||
100164 | TResNet | ImageNet | 94.43% | 3249(bs16) | bs x 3 x 224 x 224 | |||
100165 | Twins-PCPVT-S | ImageNet | 81.22% | 613(bs16) | bs x 3 x 224 x 224 | |||
100166 | Twins-SVT-L | ImageNet | 83.7% | 175.2209(bs8) | bs x 3 x 224 x 224 | |||
100167 | VAN | ImageNet | 82.78% | 874(bs8) | bs x 3 x 224 x 224 | |||
100067 | VGG19 | ImageNet | 71.76% | 90.80% | 1153(bs64) | bs x 3 x 224 x 224 | ||
100168 | Video-SwinTransformer | kinetics400 | 80.6% | 94.5% | 0.607(bs1) | 1 x 12 x 3 x 32 x 224 x 224 | ||
100169 | ViT-small | ImageNet | 81.37% | 1013(bs8) | bs x 3 x 224 x 224 | |||
100170 | VOLO | ImageNet | 82.53% | 124(bs8) | bs x 3 x 224 x 224 | |||
100171 | VoVNet39 | ImageNet | 76.77% | 93.43% | 1767(bs4) | bs x 3 x 224 x 224 | ||
100172 | Wide-ResNet101 | ImageNet | 78.86% | 94.29% | 1151(bs16) | bs x 3 x 224 x 224 | ||
100173 | Wide-ResNet50 | ImageNet | 78.48% | 94.09% | 2097(bs32) | bs x 3 x 224 x 224 | ||
100174 | Xception | ImageNet | 78.8% | 94.2% | 813(bs8) | bs x 3 x 299 x 299 | ||
100175 | XCIT | ImageNet | 81.86% | 443(bs8) | bs x 3 x 224 x 224 |
CV-detection
ID | Name | Dataset | 精度 | 最优性能(对应bs) | 输入shape | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AP | mAP | DSC-score | F1-score | Top1Acc | ODS | loss | 300I Pro | |||||
100176 | 3D-UNet | Brats2018 | 25.6% | 10.75(bs1) | bs x 4 x 64 x 64 x 64 | |||||||
100177 | AdvancedEAST | 天池ICPR | 52.08% | 137(bs1) | bs x 3 x 736 x 736 | |||||||
100178 | AlphaPose | coco | 71.47% | 1772(bs16) | bs x 3 x 256 x 192 | |||||||
100179 | BSN | Activity1.3 | 74.34% | 34617(bs16) | TEM[bs, 400, 100] PEM[bs, 3, 100] |
|||||||
100180 | Cascade-MaskRcnn-SwinS | coco | 51.4% | 3.17(bs1) | 1 x 3 x 800 x 1216 | |||||||
100181 | CascadeRCNN-DCN101 | coco | 45% | 3(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100182 | CascadeRCNN-R101-FPN | coco | 41.9% | 9(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100009 | CascadeRCNN-ResNet101-FPN-DCN | coco | 45% | 3.8(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100183 | CascadeRCNN-ResNet50-FPN | coco | 40.5% | 6.5(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100184 | CH-PPOCR-serverV2.0-det | PaddleOCR | 154(bs1) | 多尺度 | ||||||||
100185 | CH-PPOCRV2-det | PaddleOCR | 232(bs1) | 多尺度 | ||||||||
100186 | CH-PPOCRV3-det | PaddleOCR | 215(bs1) | 1 x 3 x -1 x -1 | ||||||||
100187 | CRAFT | 随机数 | 132(bs1) | 1 x 3 x 640 x 640 | ||||||||
100188 | CTPN | ICDAR2013 | 86.84% | 169(bs64) | 多尺度 | |||||||
100189 | DeepMAR | PETA | 78.9% | 1642(bs1) | bs x 3 x 224 x 224 | |||||||
100190 | EAST-MobileNetV3 | ICDAR2015 | 78.29% | 458(bs1) | bs x 3 x 704 x 1280 | |||||||
100191 | EAST-ResNet50-vd | ICDAR2015 | 88.63% | 91(bs1) | bs x 3 x 704 x 1280 | |||||||
100192 | EfficientDet-D7 | coco | 53% | 6.18(bs1) | bs x 3 x 1536x 1536 | |||||||
100193 | EN-PPOCRV3-det | PaddleOCR | 168(bs1) | 多尺度 | ||||||||
100194 | FairMOT | MOT17 | 83.7% | 12(bs32) | bs x 3 x 608 x 1088 | |||||||
100029 | FasterRCNN-DCN-Res101 | coco | 44.2% | 2.47(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100195 | FasterRCNN-DCN-Res50 | coco | 41.1% | 8(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100030 | FasterRCNN-ResNet50 | coco | 37.2% | 14.84(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100196 | FCENet | icdar2015 | 87.2% | 28.9(bs1) | bs x 3 x 1280 x 2272 | |||||||
100197 | Fcos | coco | 35.9% | 65(bs4) | bs x 3 x 800 x 1333 | |||||||
100198 | FOTS | ICDAR2015 | 86.4% | 66(bs16) | bs x 3 x1248 x 2240 | |||||||
100199 | FSAF | coco | 37.1% | 20(bs1) | bs x 3 x 800 x 1216 | |||||||
100200 | GFocalV2 | coco | 40.6% | 41.8(bs4) | bs x 3 x 800 x 1216 | |||||||
100201 | M2Det | coco | 37.8% | 65(bs4) | bs x 3 x 512 x 512 | |||||||
100202 | NAS-FPN | coco | 40.4% | 72(bs1) | 1 x 3 x 640 x 640 | |||||||
100203 | NasNetlarge | ImageNet | 82.5% | 175(bs4) | bs x 3 x 331x 331 | |||||||
100204 | Pelee | VOC | bs x 3 x 304 x 304 | |||||||||
100205 | PSE-MobileNetV3 | ICDAR2015 | 82.14% | 219(bs1) | bs x 3 x 736 x 1312 | |||||||
100206 | PSENet-ResNet50-vd | ICDAR2015 | 85.72% | 51(bs1) | bs x 3 x 736 x 1312 | |||||||
100207 | Pyramidbox | widerface | 95% | 8.9(bs1) | 1 x 3 x 1000 x 1000 | |||||||
100208 | RCF | BSDS500 | 79.8% | 93(bs1) | bs x 3 x 321 x 481 bs x 3 x 481 x 321 |
|||||||
100209 | RefineDet | VOC2007 | 79.6% | 445(bs16) | bs x 3 x 320 x 320 | |||||||
100210 | RetinaMask | coco | 27.9% | 4.3(bs1) | 1 x 3 x 1344 X 1244 | |||||||
100211 | RetinaNet | coco | 38.3% | 17(bs1) | 1 x 3 x 224 x 224 | |||||||
100212 | RFCN | VOCtest | 69.93% | 16.52(bs1) | 1 x 3 x 1344 X 1344 | |||||||
100213 | SFA3D | KITTI | 0.603 | 426(bs4) | bs x 3 x 608 X 608 | |||||||
100214 | SSD-MobileNetV1 | VOC2007 | 69.3% | 3176(bs4) | bs x 3 x 300 x 300 | |||||||
100215 | SSD-MobileNetV2 | VOC2007 | 69.8% | 2923(bs4) | bs x 3 x 300 x 300 | |||||||
100218 | TextSnake | TextSnake | 59% | 180.36(bs1) | 1 x 3 x 512 x 512 | |||||||
100219 | TOOD | coco | 42.2% | 14.6(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100220 | VGG16-SSD | VOC | 77.26% | 751(bs16) | bs x 3 x 300 x 300 | |||||||
100221 | YOLOF | coco | 42.8% | 126(bs16) | bs x 3 x 608 x 608 | |||||||
100222 | YOLOR | coco | 52.1% | 40.9(bs8) | bs x 3 x 1344 x 1344 | |||||||
100223 | YOLOX-Tiny | coco | 33.1% | 684(bs4) | bs x 3 x 640 x 640 | |||||||
100224 | YOLOXs | coco | 40.1% | 890(bs4) | bs x 3 x 640 x 640 | |||||||
100225 | YOLOX-MMdetection | coco | 51% | 77(bs64) | bs x 3 x 640 x 640 |
CV-segmentation
ID | Name | Dataset | 精度 | 最优性能(对应bs) | 输入shape | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Liver 1_Dice | AP | mAP | mIOU | maxF | MAE | 300I Pro | |||||
100226 | 3D-HRNet | Cityscapes | 80.83% | 9(bs1) | bs x 3 x 1024 x 2048 | |||||||
100227 | 3D-Nested-UNet | Task03_Liver | 96.5% | 3.98(bs1) | 1 x 3 x 224 x 224 | |||||||
100228 | Cascade-MaskRCNN | coco | 36.29% | 18(bs1) | 1 x 3 x 1344 x 1344 | |||||||
100229 | Cascade-MaskRCNN-UniFormer | coco | 72% | 3(bs1) | 1 x 3 x 800 x 1216 | |||||||
100230 | CascadeRCNN | coco | 44.2% | 9(bs1) | 1 x 3 x 1344 x 1244 | |||||||
100015 | DeeplabV3+ | VOCtrainval | 78.43% | 165(bs1) | bs x 3 x 513 x 513 | |||||||
100231 | ENet | Cityscapes | 54.11% | 1327(bs4) | bs x 3 x 480x 480 | |||||||
100232 | ErfNet | Cityscapes | 72.2% | 381(bs8) | bs x 3 x 512 x 1024 | |||||||
100233 | FastSCNN | Cityscapes | 68.6% | 39(bs1) | bs x 3 x 1024 x 2048 | |||||||
100234 | FCN-8s | VOC2012 | 69.01% | 84(bs1) | 1 x 3 x 500 x 500 | |||||||
100235 | GCNet | coco | 61% | 13(bs1) | 1 x 3 x 800 x 1216 | |||||||
100236 | ICNet | Cityscapes | 68.9% | 32(bs8) | bs x 3 x 1024 x 2048 | |||||||
100237 | IntraDA | Cityscapes | 47.01% | 47(bs1) | bs x 3 x 512 x 1024 | |||||||
100238 | LPRNet | 代码仓提供 | 90.2% | 27313(bs32) | bs x 3 x 24 x 94 | |||||||
100239 | MaskRcnn-MMdet | coco | 59% | 11(bs1) | 1 x 3 x 1216 x 1216 | |||||||
100240 | Nested-UNet | coco | 83.8% | 2623(bs4) | bs x 3 x 96 x 96 | |||||||
100241 | OCRNet | Cityscapes | 79.63% | 13(bs1) | bs x 3 x 1024 x 1024 | |||||||
100242 | PointRend | Cityscapes | 78.85% | 1.27(bs1) | 1 x 3 x 1024 x 2048 | |||||||
100243 | PraNet | kvasir | 83.6% | 425(bs4) | bs x 3 x 352 x 352 | |||||||
100244 | PSPNet | VOC2012 | 76.18% | 67.8(bs16) | bs x 3 x 500x 500 | |||||||
100245 | RefineNet | VOC2012 | 78.6% | 87(bs1) | bs x 3 x 500 x 500 | |||||||
100246 | Segformer | Cityscapes | 75.94% | 10.65(bs4) | bs x 3 x 1024 x 2048 | |||||||
100247 | Segmenter | Cityscapes | 78.89% | 3.4(bs1) | bs x 3 x 768 x 768 | |||||||
100248 | SeMask | Cityscapes | 76.54% | 4.7(bs1) | bs x 3 x 1024 x 2048 | |||||||
100249 | SETR | Cityscapes | 77.35% | 3.4(bs1) | 1 x 3 x 768 x 768 | |||||||
100250 | SiamMask | VOT2016 | 42.7% | 302(bs1) | 多尺度 | |||||||
100251 | SOLOV1 | coco | 32.1% | 10(bs1) | 1 x 3 x 800 x 1216 | |||||||
100252 | STDC | Cityscapes | 71.81% | 27(bs1) | 1 x 3 x 1024 x 2048 | |||||||
100253 | Swin97 | ADE20K | 44.78% | 21(bs1) | bs x 3 x 512 x 512 | |||||||
100254 | Swin98 | ADE20K | 47.92% | 16(bs1) | bs x 3 x 512 x 512 | |||||||
100255 | Swin99 | ADE20K | 48.29% | 14(bs1) | bs x 3 x 512 x 512 | |||||||
100256 | Swin100 | ADE20K | 48.74% | 14(bs1) | bs x 3 x 512 x 512 | |||||||
100257 | SwinTransformer-Semantic-Segmentation | ADE20K | 48.06% | 19(bs1) | 1 x 3 x 512 x 512 | |||||||
100258 | Transformer-SSL | coco | 68.8% | 4(bs1) | 1 x 3 x 800 x 1216 | |||||||
100066 | U2Net | ECSSD | 94.8% | 0.033 | 240(bs1) | bs x 3 x 320 x 320 | ||||||
100259 | Ultra-Fast-Lane-Detection | Tusimple | 95.8% | 2254(bs32) | bs x 3 x 288 x 800 | |||||||
100260 | VNet | LUNA16 | 99.4% | 44(bs1) | bs x 64 x 80 x 80 | |||||||
100261 | Wseg | VOC | 62.7% | 5(bs1) | bs x 3 x 1020 x 1020 | |||||||
100262 | YOLACT | coco | 32.07% | 163(bs1) | bs x 3 x 550 x 550 | |||||||
100263 | YOLACTEdge | coco | 27.96% | 270(bs1) | bs x 3 x 550 x 550 | |||||||
100264 | YOLACT++ | coco | 34.9% | 31(bs8) | bs x 3 x 550 x 550 |
CV-face
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |
---|---|---|---|---|---|---|
Acc | mAP | |||||
100265 | AlignedReID | Market1501 | 80.55% | 5293(bs32) | bs x 3 x 256 x 128 | |
100266 | Centroids-ReID | DukeMTMC-reID | 96.8% | 4287(bs8) | bs x 3 x 256 x 128 | |
100267 | FaceBoxes | FDDB | 94.8% | 2332(bs1) | bs x 3 x 224 x 224 | |
100268 | FaceNet | LFW | 99.2% | 7964(bs16) | bs x 3 x 160 x 160 | |
100269 | ReID-PCB-baseline | Market | 92.1% | 2031(bs16) | bs x 3 x 384 x 128 | |
100270 | ReId-MGN | Market | 94.23% | 1519(bs8) | bs x 3 x 384 x 128 | |
100271 | Retinaface | WiderFace | 87.56% | 1502(bs16) | bs x 3 x 1000 x 1000 |
CV-gan
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | ||
---|---|---|---|---|---|---|---|
IS | FID | Acc | |||||
100272 | BigGAN | 噪声数据 | 94.009 | 10 | 544(bs16) | bs x 1 x 20 bs x 5 x 148 |
|
100273 | CGAN | 随机数 | 1935(bs1) | 1 x 100 x 72 | |||
100274 | CycleGAN | maps | CycleGAN_Ga 1 CycleGAN_Gb 0.99 |
CycleGAN_Ga 231(bs64) CycleGAN_Gb 232(bs64) |
bs x 3 x 256 x 256 | ||
100275 | DCGAN | 噪声数据 | 1 | 108781(bs32) | bs x 100 x 1 x 1 | ||
100276 | DGNet | Market-1501 | 18.12 | 584(bs8) | bs x 1 x 256 x 128 bs x 3 x 256 x 128 |
||
100277 | GAN | 随机数 | 496239(bs64) | bs x 100 | |||
100278 | Pix2Pix | facades | 963(bs32) | bs x 3 x 256 x 256 | |||
100279 | Pix2PixHD | cityscapes | 5(bs1) | bs x 36 x 1024 x 2048 |
CV-image_process
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
PSNR | |||||
100280 | CrossScale-NonLocal-Attention | Set5 | 32.57 | 0.71(bs1) | 1 x 3 x 56 x 56 |
100281 | DnCNN | dncnn | 31.53 | 166(bs16) | bs x 1 x 481 x 481 |
100282 | SRFlow | DIV2K | 23 | 0.7(bs1) | 1 x 3 x 256 x 256 |
100283 | WDSR | DIV2K | 34.75 | 13(bs1) | bs x 3 x 1020 x 1020 |
CV-image_registration
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
Acc | |||||
100284 | SuperPoint | HPatches | 80.6% | 2528(bs8) | bs x 1 x 240 x 320 |
CV-image_retrieval
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
mAP | |||||
100285 | BLIP | coco | 81.3% | text:1662(bs64) image:72(bs1) image_feat:73(bs1) |
text:bs x 35 image:bs x 3 x 384 x 384 image_feat:bs x 3 x 384 x 384 |
CV-pose_estimation
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |||
---|---|---|---|---|---|---|---|---|
Top1Acc | Top5Acc | AP | MPJPE | |||||
100286 | 3DMPPE-RootNet | MuPoTS | 31.81% | 1565(bs4) | bs x 3 x 224 x 224 bs x 1 |
|||
100287 | DEKR | coco | 67.7% | 7.72(bs1) | 多尺度 | |||
100288 | HigherHRNet | coco | 67.1% | 185(bs1) | 多尺度 | |||
100289 | HRNet-MMLab | coco | 65.3% | 151(bs1) | 多尺度 | |||
100290 | MSPN | coco | 74.1% | 933(bs4) | bs x 3 x 256 x 192 | |||
100291 | PoseC3D | HMDB51 | 69.22% | 91.31% | 22.3(bs8) | bs x 20 x 17 x 48 x 56 x 56 | ||
100292 | TransPose | coco | 73.7% | 500(bs4) | bs x 3 x 256 x 192 | |||
100293 | UniFormer | coco | 93.5% | 295(bs8) | bs x 3 x 256 x 192 | |||
100294 | VideoPose3D | Human3.6M | 46.6 | 280257(bs2) | 2 x 6115 x 17 x 2 |
CV-quality_enhancement
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | ||
---|---|---|---|---|---|---|---|
ACC | PSNR | SSIM | |||||
100295 | ADNet | BSD68 | 29.24% | 215(bs64) | bs x 1 x 321 x 481 | ||
100296 | SRGAN | Set5 | 33.4391 | 93.08% | 380(bs8) | bs x 3 x 140 x 140 |
CV-super_resolution
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |
---|---|---|---|---|---|---|
PSNR | SSIM | |||||
100297 | FLAVR | UCF101 | 29.83 | 94.46% | 77(bs16) | bs x 3 x 224 x 224 |
100298 | RCAN | Set5 | 38.25 | 96.06% | 12(bs1) | bs x 3 x 256 x 256 |
100299 | RDN | Set5 | 38.27 | 47(bs1) | bs x 3 x 114 x 114 | |
100300 | Real-ESRGAN | 代码仓提供 | 251(bs4) | bs x 3 x 220 x 220 bs x 3 x 64 x 64 |
||
100301 | SRCNN | Set5 | 36.33 | 2361(bs1) | bs x 1 x 256 x 256 |
CV-tracking
ID | Name | Dataset | 精度 | 最优性能(对应bs) | 输入shape | |||||
---|---|---|---|---|---|---|---|---|---|---|
success_score | precision_score | Acc | EPE | MAPE | 300I Pro | |||||
100302 | FlowNet2 | MPI-Sintel-complete | 2.15 | 14(bs1) | bs x 3 x 448 x 1024 | |||||
100303 | SiamFC | OTB2015 | 57.2% | 76.2% | exemplar_bs1:6072(bs1) search_bs1:948(bs1) |
1 x 3 x 255 x 255 1 x 9 x 127 x 127 |
||||
100054 | SiamRPN | VOT | 63.9% | 42(bs1) | 1 x 3 x 127 x 127 1 x 3 x 255 x 255 |
|||||
100304 | GMA | MPI-Sintel-complete | final:88.95% clean:92.65% |
0.77(bs4) | 1 x 3 x 440 x 1024 | |||||
100305 | DeepCTR | 代码仓提供 | WDL:2.147 xDeepFM:1.97 AutoInt:2.14 |
WDL:0.079(bs40) xDeepFM:0.177(bs40) AutoInt:0.22(bs40) |
40 x 6 |
CV-video_understanding
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |||
---|---|---|---|---|---|---|---|---|
ADK | MKR | Top1Acc | Top5Acc | |||||
100306 | FOMM | taichi | 6.7975 | 0.036 | kp detector:957(bs1) generator:7(bs1) |
kp detecto:1 x 3 x 256 x 256 generator:多尺度 |
||
100307 | I3D-Nonlocal | kinetics400 | 70.03% | 89.51% | 14.39(bs1) | bs x 10 x 3 x 32 x 256 x 256 | ||
100308 | NonLocal | kinetics400 | 71.62% | 90.27% | 97(bs1) | bs x 3 x 8 x 224 x 224 | ||
100309 | SlowFast | kinetics400 | 70.07% | 88.55% | 138(bs1) | bs x 3 x 32 x 224 x 224 | ||
100310 | TSM | UCF-101 | 94.48% | 99.63% | 194(bs1) | bs x 8 x 3 x 224 x 224 | ||
100311 | TSN | UCF-101 | 82.83% | 22.19(bs32) | bs x 75 x 3 x 256 x 256 | |||
100312 | X3D | Kinetic400 | 73.75% | 90.25% | 386(bs8) | bs x 3 x 13 x 182 x 182 |
Audio
ID | Name | Dataset | 精度 | 最优性能(对应bs) | 输入shape | ||||
---|---|---|---|---|---|---|---|---|---|
EER | WER | ROC_AUC | mel_loss | 300I Pro | |||||
100313 | AASIST-L | LA | 0.979 | 168(bs64) | 1 x 64600 | ||||
100314 | Data2Vec | LibriSpeech | 0.94 | 11(bs1) | bs x 559280 | ||||
100021 | Ecapa-TDNN | VoxCeleb1 | 0.9991 | 1654(bs4) | bs x 80 x 200 | ||||
100031 | FastPitch | LJSpeech | 11.33 | 126(bs8) | bs x 200 | ||||
100315 | Jasper | LibriSpeech | 9.709 | 41(bs1) | bs x 64 x 4000 | ||||
100316 | LSTM | timit | 18.9075 | 83.4(bs64) | bs x 390 x 243 | ||||
100317 | RawNet2 | VoxCeleb1 | 2.5% | 77(bs16) | bs x 59049 | ||||
100318 | Speech-Transformer | aishell | 9.9% | 0.82(bs1) | 多尺度 | ||||
100319 | TDNN-contrib | librispeech | 98.69% | 1562(bs16) | 多尺度 | ||||
100071 | Wav2Vec2 | librispeech | 2.96% | 157(bs16) | bs x 10000 | ||||
100320 | WaveGlow | LJSpeech | 3(1 x 80 x 154) | 多尺度 | |||||
100321 | WeNet | aishell | 4.68% | 154.8(bs1) | 多尺度 | ||||
100321 | whisper | librispeech_asr_dummy | 8.21% | 67.32(bs1) | bs x 80 x 3000 |
Knowledge
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
MRR | |||||
100322 | RotatE | FB15k-237 | 0.3355 | head:222(bs64) tail:222(bs64) |
bs x 3 bs x 14541 |
Embedding
ID | Name | 最优性能(对应bs) | 输入shape | |
---|---|---|---|---|
300I DUO | 800I A2 | |||
100410 | bge-m3 | forward 23.23ms, e2e 137.59ms (bs2) | forward 14.71ms, e2e 103.88ms (bs2) | 动态输入 |
100411 | bge-reranker-v2-m3 | forward 22.57ms, e2e 60.47ms (bs2) | forward 15.08ms, e2e 46.64ms (bs2) | 动态输入 |
Nlp
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape | |||||
---|---|---|---|---|---|---|---|---|---|---|
Acc | WER | loss | BLEU | F1 | bpc | |||||
100005 | BertBase-Uncased | squad | 88.78% | 221(bs4) | bs x 512 | |||||
100323 | BertSum | 代码仓提供 | 42.85% | 138.09(bs8) | bs x 512 bs x 37 |
|||||
100324 | CH-PPOCR-serverV2.0-rec | PaddleOCR | 289(bs1) | 多尺度 | ||||||
100325 | CH-PPOCRV2-rec | PaddleOCR | 260(bs1) | 多尺度 | ||||||
100326 | CH-PPOCRV3-rec | PaddleOCR | 1411(bs1) | 多尺度 | ||||||
100327 | CNN-Transformer | Librispeech | 0.0556 | 52(bs1) | 多尺度 | |||||
100328 | DeBERTa | MNLI | 90.46% | 5(bs64) | bs x 256 | |||||
100329 | ELMO | 1 Billion Word | 62(bs1) | 1 x 8 x 50 | ||||||
100330 | EN-PPOCRV3-rec | PaddleOCR | 6144(bs16) | bs x 3 x 48 x 320 | ||||||
100331 | GPT2 | wiki_zh_2019 | 16.5 | 189(bs16) | bs x 512 | |||||
100332 | GNMT | newstest2014 | 22.69 | 24(bs1) | 1 x 1 1 x 30 |
|||||
100333 | HuBERT | test-clean | 2.13 | 3(bs1) | 1 x 580000 | |||||
100334 | RARE-ResNet34-vd | LMDB | 84.79% | 1603(bs32) | bs x 3 x 32 x 100 | |||||
100335 | Rosetta-MobileNetV3 | LMDB | 77.38% | 24219(bs64) | bs x 3 x 32 x 100 | |||||
100336 | Rosetta-ResNet34-vd | LMDB | 80.63% | 7418(bs16) | bs x 3 x 32 x 100 | |||||
100337 | SATRN | IIIT5K | 94.87% | 31(bs1) | 1 x 3 x 32 x 100 | |||||
100338 | SpanBERT | SQuAD 1.1 | 93.95% | 43(bs1) | bs x 512 | |||||
100339 | StarNet-MobileNetV3 | LMDB | 80.02% | 2617(bs64) | bs x 3 x 32 x 100 | |||||
100341 | TinyBERT | SST-2 | 92.32% | 11160(bs64) | bs x 4 x 84 x 84 | |||||
100342 | Transformer | Multi30k | 40.92% | 48(bs1) | 1 x 15 | |||||
100343 | TransformerXL | enwik8 | 1.966 | 287(bs1) | 80 x 1 160 x 1 x 512 |
|||||
100344 | TrOCR | IAM | 4.25 | 8(bs1) | 1 x 3 x 384 x 384 | |||||
100345 | VilBERT | coco | 0.67 | 493(bs32) | 多尺度 |
RL
ID | Name | Dataset | 精度 | 300I Pro最优性能(对应bs) | 输入shape |
---|---|---|---|---|---|
Acc | |||||
100346 | C51 | 随机数 | 98.9% | 6050(bs1) | 1 x 4 x 84 x 84 |
100347 | DQN | 随机数 | 100% | 8147(bs1) | 1 x 4 x 84 x 84 |
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。