代码拉取完成,页面将自动刷新
This implements training of Squeezenet1_1 on the ImageNet dataset, mainly modified from pytorch/examples.
As of the current date, Ascend-Pytorch is still inefficient for contiguous operations. Therefore, Squeezenet1_1 is re-implemented using semantics such as custom OP. For details, see models/Squeezenet.py .
pip install -r requirements.txt
Note: pillow recommends installing a newer version. If the corresponding torchvision version cannot be installed directly, you can use the source code to install the corresponding version. The source code reference link: https://github.com/pytorch/vision,
Suggestion the pillow is 9.1.0 and the torchvision is 0.6.0To train a model, run main.py or main_8p.py
with the desired model architecture and the path to the ImageNet dataset:
# O2 training 1p
bash scripts/run_1p.sh
# O2 training 8p
bash scripts/run_8p.sh
Acc@1 | FPS | Npu_nums | Epochs | AMP_Type |
---|---|---|---|---|
- | 384 | 1 | 240 | O2 |
58.54 | 1963 | 8 | 240 | O2 |
代码涉及公网地址参考 public_address_statement.md
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。