31 Star 146 Fork 232

Ascend/mindsdk-referenceapps

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
TestAscendIndexSQMulPerformance.cpp 7.98 KB
一键复制 编辑 原始数据 按行查看 历史
/*
* Copyright(C) 2020. Huawei Technologies Co.,Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// 需要生成aicpu算子+sq8(-d 64)
#include <numeric>
#include <random>
#include <cfloat>
#include <gtest/gtest.h>
#include <faiss/ascend/AscendIndexSQ.h>
#include <faiss/ascend/AscendMultiIndexSearch.h>
#include <faiss/ascend/AscendCloner.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/index_io.h>
#include <sys/time.h>
namespace {
const auto METRIC_TYPE = faiss::METRIC_INNER_PRODUCT;
const auto DIM = 64;
const int NTOTAL = 1000000;
const std::vector<int> DEVICE_IDS = { 0 };
unsigned int g_seed;
const int FAST_RAND_MAX = 0x7FFF;
const int MILLI_SECOND = 1000;
inline void FastSrand(int seed)
{
g_seed = seed;
}
inline int FastRand(void)
{
const int mutipliyNum = 214013;
const int addNum = 2531011;
const int rshiftNum = 16;
g_seed = (mutipliyNum * g_seed + addNum);
return (g_seed >> rshiftNum) & FAST_RAND_MAX;
}
inline double GetMillisecs()
{
struct timeval tv = { 0, 0 };
gettimeofday(&tv, nullptr);
return tv.tv_sec * 1e3 + tv.tv_usec * 1e-3;
}
inline void AssertEqual(std::vector<uint8_t> &gt, std::vector <uint8_t> &data)
{
ASSERT_EQ(gt.size(), data.size());
for (size_t i = 0; i < gt.size(); i++) {
ASSERT_EQ(gt[i], data[i]);
}
}
void Norm(float *data, size_t n, size_t dim)
{
#pragma omp parallel for if (n > 1)
for (size_t i = 0; i < n; ++i) {
float l2norm = 0.0;
for (size_t j = 0; j < dim; ++j) {
l2norm += data[i * dim + j] * data[i * dim + j];
}
l2norm = std::sqrt(l2norm);
if (fabs(l2norm) < FLT_EPSILON) {
std::cerr << "Error: Invalid l2norm value." << std::endl;
}
for (size_t j = 0; j < dim; ++j) {
data[i * dim + j] = data[i * dim + j] / l2norm;
}
}
}
void MultiSearch(int indexNum, std::vector<std::vector<float>>& data,
std::vector<faiss::ascend::AscendIndex *>& indexes, std::vector<int>& searchNum)
{
int k = 5;
int loopTimes = 100;
const int warmupNum = 15;
std::vector<float> distWM(warmupNum * k, 0);
std::vector<faiss::idx_t> labelWM(warmupNum * k, 0);
for (int i = 0; i < indexNum; i++) {
indexes[i]->search(warmupNum, data[0].data(), k, distWM.data(), labelWM.data());
}
for (size_t n = 0; n < searchNum.size(); n++) {
std::vector<float> dist(searchNum[n] * k, 0);
std::vector<faiss::idx_t> label(searchNum[n] * k, 0);
double ts = GetMillisecs();
for (int l = 0; l < loopTimes; l++) {
for (int i = 0; i < indexNum; i++) {
indexes[i]->search(searchNum[n], data[0].data(), k, dist.data(), label.data());
}
}
double te = GetMillisecs();
printf("multi search: false, index num: %d, k: %d, base: %d, dim: %d, search num: %2d, QPS: %9.4f \n",
indexNum, k, NTOTAL, DIM, searchNum[n], MILLI_SECOND * searchNum[n] * loopTimes / (te - ts));
}
// multiSearch
std::vector<float> distWU(indexNum * warmupNum * k, 0);
std::vector<faiss::idx_t> labelWU(indexNum * warmupNum * k, 0);
Search(indexes, warmupNum, data[0].data(), k, distWU.data(), labelWU.data(), false);
for (size_t n = 0; n < searchNum.size(); n++) {
std::vector<float> dist(indexNum * searchNum[n] * k, 0);
std::vector<faiss::idx_t> label(indexNum * searchNum[n] * k, 0);
double ts = GetMillisecs();
for (int l = 0; l < loopTimes; l++) {
Search(indexes, searchNum[n], data[0].data(), k, dist.data(), label.data(), false);
}
double te = GetMillisecs();
printf("multi search: true, index num: %d, k: %d, base: %d, dim: %d, search num: %2d, QPS: %9.4f \n",
indexNum, k, NTOTAL, DIM, searchNum[n], MILLI_SECOND * searchNum[n] * loopTimes / (te - ts));
}
}
void MutiOneIndex(int indexNum, std::vector<std::vector<float>>& data,
std::vector<faiss::ascend::AscendIndex *>& indexes, std::vector<int>& searchNum)
{
int topK = 5;
int loopTime = 100;
const int warmupNumber = 15;
std::vector<float> distWU(indexNum * warmupNumber * topK, 0);
std::vector<faiss::idx_t> labelWU(indexNum * warmupNumber * topK, 0);
Search(indexes, warmupNumber, data[0].data(), topK, distWU.data(), labelWU.data(), false);
for (size_t n = 0; n < searchNum.size(); n++) {
std::vector<float> dist(searchNum[n] * topK, 0);
std::vector<faiss::idx_t> label(searchNum[n] * topK, 0);
double timeloop = 0.0;
for (int l = 0; l < loopTime; l++) {
for (int i = 0; i < indexNum; i++) {
std::vector<faiss::ascend::AscendIndex *> index_one;
index_one.emplace_back(indexes[i]);
double ts = GetMillisecs();
Search(index_one, searchNum[n], data[0].data(), topK, dist.data(), label.data(), false);
double te = GetMillisecs();
timeloop += (te - ts);
}
}
printf("multi search loop one index, index num: %d, topK: %d, base: %d, dim: %d, "
"search num: %2d, QPS: %9.4f \n",
indexNum, topK, NTOTAL, DIM, searchNum[n], MILLI_SECOND * searchNum[n] * loopTime / timeloop);
}
}
TEST(TestAscendIndexSQ, TwentyIndexQPS)
{
size_t ntotal = 300000;
int indexNum = 20;
std::vector<size_t> ntotals(indexNum, 36842);
ntotals[0] = ntotal;
std::vector<int> searchNum = { 1, 2, 4, 8, 16 };
size_t maxSize = ntotal * DIM;
std::vector<std::vector<float>> data(indexNum, std::vector<float>(maxSize));
for (int i = 0; i < indexNum; ++i) {
for (size_t j = 0; j < maxSize; j++) {
data[i][j] = 1.0 * FastRand() / FAST_RAND_MAX;
}
Norm(data[i].data(), ntotal, DIM);
}
std::vector<faiss::ascend::AscendIndex *> indexes;
faiss::ascend::AscendIndexSQConfig conf(DEVICE_IDS, 1024 * 1024 * 1024);
for (int i = 0; i < indexNum; i++) {
auto index =
new faiss::ascend::AscendIndexSQ(DIM, faiss::ScalarQuantizer::QuantizerType::QT_8bit, METRIC_TYPE, conf);
ASSERT_FALSE(index == nullptr);
indexes.emplace_back(index);
}
for (int j = 0; j < indexNum; j++) {
const auto index = indexes[j];
index->reset();
for (auto deviceId : conf.deviceList) {
int len = dynamic_cast<faiss::ascend::AscendIndexSQ *>(index)->getBaseSize(deviceId);
ASSERT_EQ(len, 0);
}
}
for (int i = 0; i < indexNum; ++i) {
const auto index = indexes[i];
index->train(ntotals[i], data[i].data());
index->add(ntotals[i], data[i].data());
{
size_t getTotal = 0;
for (auto deviceId : conf.deviceList) {
size_t tmpTotal = dynamic_cast<faiss::ascend::AscendIndexSQ *>(index)->getBaseSize(deviceId);
getTotal += tmpTotal;
}
ASSERT_EQ(getTotal, ntotals[i]);
}
}
// multiSearch
MultiSearch(indexNum, data, indexes, searchNum);
// multiSearch loop one index
MutiOneIndex(indexNum, data, indexes, searchNum);
for (int i = 0; i < indexNum; i++) {
delete indexes[i];
}
}
} // namespace
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/ascend/mindsdk-referenceapps.git
git@gitee.com:ascend/mindsdk-referenceapps.git
ascend
mindsdk-referenceapps
mindsdk-referenceapps
master

搜索帮助