代码拉取完成,页面将自动刷新
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from __future__ import print_function
import os
import shutil
import logging
from setuptools import setup, find_packages
DESCRIPTION = """FAISS is a library for efficient similarity search and clustering of dense
vectors on Ascend."""
check_fpath = os.path.join("_swig_ascendfaiss.so")
if not os.path.exists(check_fpath):
logging.warning("Could not find %s", check_fpath)
# make the faiss python package dir
shutil.rmtree("ascendfaiss", ignore_errors=True)
os.mkdir("ascendfaiss")
shutil.copyfile("ascendfaiss.py", "ascendfaiss/__init__.py")
shutil.copyfile("swig_ascendfaiss.py", "ascendfaiss/swig_ascendfaiss.py")
shutil.copyfile("_swig_ascendfaiss.so", "ascendfaiss/_swig_ascendfaiss.so")
setup(
name='ascendfaiss',
version='1.0.0',
description='A library for efficient similarity search and clustering of dense vectors',
long_description=DESCRIPTION,
author='Huawei',
author_email='',
license='MIT',
keywords='search nearest neighbors',
install_requires=['numpy'],
packages=['ascendfaiss'],
include_package_data=True,
package_data={
'ascendfaiss': ['*.so'],
},
zip_safe=False,
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。