代码拉取完成,页面将自动刷新
// Copyright (c) 2023 Huawei Technologies Co., Ltd
// All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "op_plugin/AclOpsInterface.h"
#include "op_plugin/OpApiInterface.h"
#include "op_plugin/utils/op_api_common.h"
namespace op_api {
using npu_preparation = at_npu::native::OpPreparation;
std::tuple<at::Tensor &, at::Tensor &> sort_output(const at::Tensor &self, bool stable, int64_t dim, bool descending,
at::Tensor &values, at::Tensor &indices)
{
EXEC_NPU_CMD(aclnnSort, self, stable, dim, descending, values, indices);
return std::tie(values, indices);
}
std::tuple<at::Tensor, at::Tensor> sort(const at::Tensor &self, int64_t dim, bool descending)
{
DO_COMPATIBILITY(aclnnSort, acl_op::sort(self, dim, descending));
at::Tensor values = npu_preparation::apply_tensor_without_format(self);
at::Tensor indices = npu_preparation::apply_tensor_without_format(self.sizes(), self.options().dtype(at::kLong));
bool stable = false;
return sort_output(self, stable, dim, descending, values, indices);
}
std::tuple<at::Tensor, at::Tensor> sort(const at::Tensor &self, at::Dimname dim, bool descending)
{
DO_COMPATIBILITY(aclnnSort, acl_op::sort(self, dim, descending));
at::Tensor values = npu_preparation::apply_tensor_without_format(self);
at::Tensor indices = npu_preparation::apply_tensor_without_format(self.sizes(), self.options().dtype(at::kLong));
bool stable = false;
int64_t argDim = dimname_to_position(self, dim);
return sort_output(self, stable, argDim, descending, values, indices);
}
std::tuple<at::Tensor &, at::Tensor &> sort_out(const at::Tensor &self, int64_t dim,
bool descending, at::Tensor &values, at::Tensor &indices)
{
DO_COMPATIBILITY(aclnnSort, acl_op::sort_out(self, dim, descending, values, indices));
npu_preparation::check_tensor({self}, values, values.scalar_type(), self.sizes());
npu_preparation::check_tensor({self}, indices, indices.scalar_type(), self.sizes());
bool stable = false;
return sort_output(self, stable, dim, descending, values, indices);
}
std::tuple<at::Tensor &, at::Tensor &> sort_out(const at::Tensor &self, at::Dimname dim,
bool descending, at::Tensor &values, at::Tensor &indices)
{
DO_COMPATIBILITY(aclnnSort, acl_op::sort_out(self, dim, descending, values, indices));
npu_preparation::check_tensor({self}, values, values.scalar_type(), self.sizes());
npu_preparation::check_tensor({self}, indices, indices.scalar_type(), self.sizes());
bool stable = false;
return sort_output(self, stable, dimname_to_position(self, dim), descending, values, indices);
}
std::tuple<at::Tensor, at::Tensor> sort(const at::Tensor &self,
c10::optional<bool> stable,
int64_t dim,
bool descending)
{
auto dtype = self.scalar_type();
TORCH_CHECK(!(dtype == at::kDouble),
"Input data type should not be float64 " + OPS_ERROR(ErrCode::TYPE));
at::Tensor values = npu_preparation::apply_tensor_without_format(self);
at::Tensor indices = npu_preparation::apply_tensor_without_format(self.sizes(), self.options().dtype(at::kLong));
bool argStable = c10::value_or_else(stable, [] { return false; });
EXEC_NPU_CMD(aclnnSort, self, argStable, dim, descending, values, indices);
return std::tie(values, indices);
}
std::tuple<at::Tensor &, at::Tensor &> sort_out(const at::Tensor &self,
c10::optional<bool> stable,
int64_t dim,
bool descending,
at::Tensor &values,
at::Tensor &indices)
{
auto dtype = self.scalar_type();
TORCH_CHECK(!(dtype == at::kDouble),
"Input data type should not be float64 " + OPS_ERROR(ErrCode::TYPE));
npu_preparation::check_tensor({self}, values, values.scalar_type(), self.sizes());
npu_preparation::check_tensor({self}, indices, indices.scalar_type(), self.sizes());
bool argStable = c10::value_or_else(stable, [] { return false; });
EXEC_NPU_CMD(aclnnSort, self, argStable, dim, descending, values, indices);
return std::tie(values, indices);
}
} // namespace op_api
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。