Fetch the repository succeeded.
# Copyright (c) 2020 Huawei Technologies Co., Ltd
# All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch_npu
from torch_npu.testing.testcase import TestCase, run_tests
from torch_npu.testing.common_utils import create_common_tensor
from torch_npu.contrib.function import npu_fast_condition_index_put
class TestIndexOp(TestCase):
def npu_slow_index_op_exec(self, input1):
condition = input1 < 0.5
value = 0.
input1[condition] = value
return input1
def npu_fast_index_op_exec(self, input1):
condition = input1 < 0.5
value = 0.
return npu_fast_condition_index_put(input1, condition, value)
def test_npu_index_op(self):
dtype_list = [np.float16, np.float32]
format_list = [-1, 0, 2]
shape_list = [
[2, 3, 7, 7],
[1, 2, 3, 6],
[6, 5, 8, 10],
[2, 5, 6, 8]
]
shape_format = [
[i, j, k] for i in dtype_list for j in format_list for k in shape_list
]
for item in shape_format:
cpu_input, npu_input = create_common_tensor(item, 1, 10)
npu_slow_output = self.npu_slow_index_op_exec(npu_input)
npu_fast_output = self.npu_fast_index_op_exec(npu_input)
self.assertRtolEqual(npu_slow_output.cpu(), npu_fast_output.cpu())
if __name__ == "__main__":
run_tests()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。