75 Star 579 Fork 1.1K

Ascend/pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_drop_path.py 3.99 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright (c) 2020 Huawei Technologies Co., Ltd
# All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import numpy as np
import torch
import torch.nn as nn
import torch_npu
from torch_npu.testing.testcase import TestCase, run_tests
from torch_npu.testing.common_utils import create_common_tensor
from torch_npu.contrib.module import NpuDropPath
class TestDropPath(TestCase):
def npu_slow_drop_path_op_exec(self, input1, input2):
class DropPath(nn.Module):
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_()
output = x.div(keep_prob) * random_tensor
return output
slow_drop_path = DropPath(0).npu()
output = input1 + slow_drop_path(input2)
output.sum().backward()
return output.cpu().detach().numpy()
def npu_fast_drop_path_op_exec(self, input1, input2):
fast_drop_path = NpuDropPath(0).npu()
output = input1 + fast_drop_path(input2)
output.sum().backward()
return output.cpu().detach().numpy()
def npu_slow_drop_path(self, input1, input2):
output = self.npu_slow_drop_path_op_exec(input1, input2)
repeat_time = 100
torch.npu.synchronize()
t1 = time.time()
for _ in range(repeat_time):
self.npu_slow_drop_path_op_exec(input1, input2)
torch.npu.synchronize()
slow_time = (time.time() - t1) / repeat_time * 1000
return output, slow_time
def npu_fast_drop_path(self, input1, input2):
output = self.npu_fast_drop_path_op_exec(input1, input2)
repeat_time = 100
torch.npu.synchronize()
t2 = time.time()
for _ in range(repeat_time):
self.npu_fast_drop_path_op_exec(input1, input2)
torch.npu.synchronize()
fast_time = (time.time() - t2) / repeat_time * 1000
return output, fast_time
def test_drop_path_shape_format(self):
shape_format = [
[[np.float16, 2, [50, 25, 7, 100]], [np.float16, 2, [50, 25, 7, 100]]],
[[np.float16, 3, [68, 5, 75, 16]], [np.float16, 3, [68, 5, 75, 16]]],
[[np.float16, 3, [68, 5]], [np.float16, 3, [68, 5]]],
[[np.float32, 2, [50, 25, 7, 100]], [np.float32, 2, [50, 25, 7, 100]]],
[[np.float32, 3, [68, 5, 75, 16]], [np.float32, 3, [68, 5, 75, 16]]],
[[np.float32, 3, [68, 5]], [np.float32, 3, [68, 5]]],
]
for item in shape_format:
_, mat1_npu = create_common_tensor(item[0], -10, 10)
_, mat2_npu = create_common_tensor(item[1], -10, 10)
mat1_npu.requires_grad_(True)
mat2_npu.requires_grad_(True)
slow_output, slow_time = \
self.npu_slow_drop_path(mat1_npu, mat2_npu)
fast_output, fast_time = \
self.npu_fast_drop_path(mat1_npu, mat2_npu)
self.assertRtolEqual(slow_output, fast_output)
self.assertTrue(slow_time > fast_time)
if __name__ == "__main__":
run_tests()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/pytorch.git
git@gitee.com:ascend/pytorch.git
ascend
pytorch
pytorch
v1.8.1-3.0.0

搜索帮助