78 Star 603 Fork 1.2K

Ascend/pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_channel_shuffle.py 4.66 KB
一键复制 编辑 原始数据 按行查看 历史
王夏夏 提交于 3年前 . add 5个亲和库
# Copyright (c) 2020 Huawei Technologies Co., Ltd
# All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch_npu
from torch_npu.testing.testcase import TestCase, run_tests
from torch_npu.testing.common_utils import create_common_tensor
from torch_npu.contrib.module import ChannelShuffle
class TestChannelShuffle(TestCase):
def cpu_channel_shuffle(self, x, groups, split_shuffle):
#split_shuffle cpu仅支持False场景
batchsize, num_channels, height, width = x.size()
channels_per_group = num_channels // groups
x.requires_grad_(True)
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
output = x.view(batchsize, -1, height, width)
return output.detach().numpy()
def npu_channel_shuffle(self, x, groups, split_shuffle):
model = ChannelShuffle(groups, split_shuffle=split_shuffle)
x = x.npu()
model = model.npu()
output = model(x, x)
return output.detach().cpu().numpy()
def npu_channel_shuffle_backward(self, x, groups, split_shuffle):
model = ChannelShuffle(4, split_shuffle=split_shuffle)
x = x.npu()
x.requires_grad_(True)
model = model.npu()
output = model(x, x)
loss = sum([i.sum() for i in output]) if split_shuffle else output.sum()
loss.backward()
return output[0], output[1]
def test_channel_shuffle_1_False(self):
split_shuffle = False
x = torch.randn(2, 2, 3, 3)
conv = torch.nn.Conv2d(2, 2, 1)
x1 = conv(x)
cpu_out = self.cpu_channel_shuffle(x1, groups=2, split_shuffle=False)
x1 = x1.npu()
npu_out = self.npu_channel_shuffle(x1, groups=2, split_shuffle=False)
self.assertRtolEqual(cpu_out, npu_out)
def test_npu_channel_shuffle_2_True(self):
# There is no benchmarking data when split_shuffle=True,
x = torch.randn(2, 2, 3, 3)
conv = torch.nn.Conv2d(2, 2, 1)
x1 = conv(x)
x1 = x1.npu()
npu_output1, npu_output2 = self.npu_channel_shuffle_backward(x1, groups=4, split_shuffle=True)
expedt_cpu_output1 = torch.tensor([[[[ 0.0385, -0.3217, -0.0174],
[ 0.1337, -0.1197, -0.0415],
[ 0.0843, 0.1638, -0.0149]],
[[ 0.0385, -0.3217, -0.0174],
[ 0.1337, -0.1197, -0.0415],
[ 0.0843, 0.1638, -0.0149]]],
[[[-0.0203, -0.3950, -0.1230],
[ 0.2059, 0.0822, 0.6951],
[-0.0773, 0.0535, -0.0462]],
[[-0.0203, -0.3950, -0.1230],
[ 0.2059, 0.0822, 0.6951],
[-0.0773, 0.0535, -0.0462]]]], dtype=torch.float32)
expedt_cpu_output2 = torch.tensor([[[[ 0.5454, -0.0463, 0.4660],
[ 0.7197, 0.2986, 0.4197],
[ 0.6225, 0.7925, 0.4614]],
[[ 0.5454, -0.0463, 0.4660],
[ 0.7197, 0.2986, 0.4197],
[ 0.6225, 0.7925, 0.4614]]],
[[[ 0.4537, -0.1535, 0.3048],
[ 0.8306, 0.6178, 1.7047],
[ 0.3617, 0.5625, 0.4009]],
[[ 0.4537, -0.1535, 0.3048],
[ 0.8306, 0.6178, 1.7047],
[ 0.3617, 0.5625, 0.4009]]]], dtype=torch.float32)
self.assertRtolEqual(expedt_cpu_output1.numpy(), npu_output1.detach().cpu().numpy())
self.assertRtolEqual(expedt_cpu_output2.numpy(), npu_output2.detach().cpu().numpy())
if __name__ == "__main__":
run_tests()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/pytorch.git
git@gitee.com:ascend/pytorch.git
ascend
pytorch
pytorch
v2.0.1-5.0.rc3

搜索帮助