代码拉取完成,页面将自动刷新
# Copyright (c) 2020 Huawei Technologies Co., Ltd
# All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch_npu
from torch_npu.testing.testcase import TestCase, run_tests
from torch_npu.testing.common_utils import create_common_tensor
from torch_npu.contrib.module import ChannelShuffle
class TestChannelShuffle(TestCase):
def cpu_channel_shuffle(self, x, groups, split_shuffle):
#split_shuffle cpu仅支持False场景
batchsize, num_channels, height, width = x.size()
channels_per_group = num_channels // groups
x.requires_grad_(True)
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
output = x.view(batchsize, -1, height, width)
return output.detach().numpy()
def npu_channel_shuffle(self, x, groups, split_shuffle):
model = ChannelShuffle(groups, split_shuffle=split_shuffle)
x = x.npu()
model = model.npu()
output = model(x, x)
return output.detach().cpu().numpy()
def npu_channel_shuffle_backward(self, x, groups, split_shuffle):
model = ChannelShuffle(4, split_shuffle=split_shuffle)
x = x.npu()
x.requires_grad_(True)
model = model.npu()
output = model(x, x)
loss = sum([i.sum() for i in output]) if split_shuffle else output.sum()
loss.backward()
return output[0], output[1]
def test_channel_shuffle_1_False(self):
split_shuffle = False
x = torch.randn(2, 2, 3, 3)
conv = torch.nn.Conv2d(2, 2, 1)
x1 = conv(x)
cpu_out = self.cpu_channel_shuffle(x1, groups=2, split_shuffle=False)
x1 = x1.npu()
npu_out = self.npu_channel_shuffle(x1, groups=2, split_shuffle=False)
self.assertRtolEqual(cpu_out, npu_out)
def test_npu_channel_shuffle_2_True(self):
# There is no benchmarking data when split_shuffle=True,
x = torch.randn(2, 2, 3, 3)
conv = torch.nn.Conv2d(2, 2, 1)
x1 = conv(x)
x1 = x1.npu()
npu_output1, npu_output2 = self.npu_channel_shuffle_backward(x1, groups=4, split_shuffle=True)
expedt_cpu_output1 = torch.tensor([[[[ 0.0385, -0.3217, -0.0174],
[ 0.1337, -0.1197, -0.0415],
[ 0.0843, 0.1638, -0.0149]],
[[ 0.0385, -0.3217, -0.0174],
[ 0.1337, -0.1197, -0.0415],
[ 0.0843, 0.1638, -0.0149]]],
[[[-0.0203, -0.3950, -0.1230],
[ 0.2059, 0.0822, 0.6951],
[-0.0773, 0.0535, -0.0462]],
[[-0.0203, -0.3950, -0.1230],
[ 0.2059, 0.0822, 0.6951],
[-0.0773, 0.0535, -0.0462]]]], dtype=torch.float32)
expedt_cpu_output2 = torch.tensor([[[[ 0.5454, -0.0463, 0.4660],
[ 0.7197, 0.2986, 0.4197],
[ 0.6225, 0.7925, 0.4614]],
[[ 0.5454, -0.0463, 0.4660],
[ 0.7197, 0.2986, 0.4197],
[ 0.6225, 0.7925, 0.4614]]],
[[[ 0.4537, -0.1535, 0.3048],
[ 0.8306, 0.6178, 1.7047],
[ 0.3617, 0.5625, 0.4009]],
[[ 0.4537, -0.1535, 0.3048],
[ 0.8306, 0.6178, 1.7047],
[ 0.3617, 0.5625, 0.4009]]]], dtype=torch.float32)
self.assertRtolEqual(expedt_cpu_output1.numpy(), npu_output1.detach().cpu().numpy())
self.assertRtolEqual(expedt_cpu_output2.numpy(), npu_output2.detach().cpu().numpy())
if __name__ == "__main__":
run_tests()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。