78 Star 600 Fork 1.2K

Ascend/pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
test_roll.py 2.53 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright (c) 2020 Huawei Technologies Co., Ltd
# All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import numpy as np
import torch
import torch_npu
from torch_npu.testing.testcase import TestCase, run_tests
from torch_npu.testing.common_utils import create_common_tensor
from torch_npu.contrib.function import roll
class TestRoll(TestCase):
def npu_slow_roll_op_exec(self, input1, shift_size, dims):
output = torch.roll(input1, shifts=(-shift_size, -shift_size), dims=dims)
repeat_time = 100
torch.npu.synchronize()
t1 = time.time()
for _ in range(repeat_time):
torch.roll(input1, shifts=(-shift_size, -shift_size), dims=dims)
torch.npu.synchronize()
slow_time = (time.time() - t1) / repeat_time * 1000
return output.to("cpu").numpy(), slow_time
def npu_fast_roll_op_exec(self, input1, shift_size, dims):
output = roll(input1, shifts=(-shift_size, -shift_size), dims=dims)
repeat_time = 100
torch.npu.synchronize()
t2 = time.time()
for _ in range(repeat_time):
roll(input1, shifts=(-shift_size, -shift_size), dims=dims)
torch.npu.synchronize()
fast_time = (time.time() - t2) / repeat_time * 1000
return output.to("cpu").numpy(), fast_time
def test_roll_shape_format(self):
dtype_list = [np.float16, np.float32, np.uint8, np.int32]
format_list = [-1, 2]
shape_list = [[32, 56, 56, 16]]
shape_format = [
[i, j, k] for i in dtype_list for j in format_list for k in shape_list
]
for item in shape_format:
_, npu_input = create_common_tensor(item, -10, 10)
shift_size = 3
slow_output, slow_time = self.npu_slow_roll_op_exec(npu_input, shift_size, (1, 2))
fast_output, fast_time = self.npu_fast_roll_op_exec(npu_input, shift_size, (1, 2))
self.assertRtolEqual(slow_output, fast_output)
self.assertTrue(slow_time > fast_time)
if __name__ == "__main__":
run_tests()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/pytorch.git
git@gitee.com:ascend/pytorch.git
ascend
pytorch
pytorch
v2.0.1-5.0.rc3

搜索帮助