登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
代码拉取完成,页面将自动刷新
仓库状态说明
开源项目
>
人工智能
>
机器学习/深度学习
&&
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
88
Star
650
Fork
1.4K
Ascend
/
pytorch
暂停
代码
Issues
41
Pull Requests
350
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
pytorch运行官方demo出错
DONE
#I8OHHW
训练问题
cai_dd
创建于
2023-12-14 17:49
**env:** hardware: 300 I pro Ascend-cann-toolkit_7.0.0.alpha002 pytorch==1.11.0 按照官方运行如下示例成功: ``` import torch import torch_npu x = torch.randn(2, 2).npu() y = torch.randn(2, 2).npu() z = x.mm(y) print(z) ``` 但运行如下代码失败: ``` # 引入模块 import time import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import torchvision import torch_npu from torch_npu.npu import amp # 导入AMP模块 from torch_npu.contrib import transfer_to_npu # 使能自动迁移 # 初始化运行device device = torch.device('cuda:0') # 定义模型网络 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.net = nn.Sequential( # 卷积层 nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=1), # 池化层 nn.MaxPool2d(kernel_size=2), # 卷积层 nn.Conv2d(16, 32, 3, 1, 1), # 池化层 nn.MaxPool2d(2), # 将多维输入一维化 nn.Flatten(), nn.Linear(32*7*7, 16), # 激活函数 nn.ReLU(), nn.Linear(16, 10) ) def forward(self, x): return self.net(x) # 下载数据集 train_data = torchvision.datasets.MNIST( root='mnist', download=True, train=True, transform=torchvision.transforms.ToTensor() ) # 定义训练相关参数 batch_size = 64 model = CNN().to(device) # 定义模型 train_dataloader = DataLoader(train_data, batch_size=batch_size) # 定义DataLoader loss_func = nn.CrossEntropyLoss().to(device) # 定义损失函数 optimizer = torch.optim.SGD(model.parameters(), lr=0.1) # 定义优化器 scaler = amp.GradScaler() # 在模型、优化器定义之后,定义GradScaler epochs = 10 # 设置循环次数 # 设置循环 for epoch in range(epochs): for imgs, labels in train_dataloader: start_time = time.time() # 记录训练开始时间 imgs = imgs.to(device) # 把img数据放到指定NPU上 labels = labels.to(device) with amp.autocast(): # 把label数据放到指定NPU上 outputs = model(imgs) # 前向计算 loss = loss_func(outputs, labels) # 损失函数计算 optimizer.zero_grad() scaler.scale(loss).backward() # loss缩放并反向转播 scaler.step(optimizer) # 更新参数(自动unscaling) scaler.update() # 基于动态Loss Scale更新loss_scaling系数 loss.backward() # 损失函数反向计算 optimizer.step() # 更新优化器 # 定义保存模型 torch.save({ 'epoch': 10, 'arch': CNN, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), },'checkpoint.pth.tar') ``` 错误日志在 ``` EZ3003: No supported Ops kernel and engine are found for [MaxPoolGradWithArgmaxV144], optype [MaxPoolGradWithArgmaxV1]. Possible Cause: The operator is not supported by the system. Therefore, no hit is found in any operator information library. Solution: 1. Check that the OPP component is installed properly. 2. Submit an issue to request for the support of this operator type. TraceBack (most recent call last): build graph failed, graph id:43, ret:-1[FUNC:BuildModelWithGraphId][FILE:ge_generator.cc][LINE:1615] [Build][SingleOpModel]call ge interface generator.BuildSingleOpModel failed. ge result = 4294967295[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] [Build][Op]Fail to build op model[FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] build op model failed, result = 500002[FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] terminate called after throwing an instance of 'std::runtime_error' what(): ASCEND kernel errors might be asynchronously reported at some other API call, so the stacktrace below is not the root cause of the problem. For getting the stacktrace of OP in PyTorch, consider passing ASCEND_LAUNCH_BLOCKING=1. ``` 请问原因是什么,代码参考来源于https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/modeldevpt/ptmigr/AImpug_0003.html
**env:** hardware: 300 I pro Ascend-cann-toolkit_7.0.0.alpha002 pytorch==1.11.0 按照官方运行如下示例成功: ``` import torch import torch_npu x = torch.randn(2, 2).npu() y = torch.randn(2, 2).npu() z = x.mm(y) print(z) ``` 但运行如下代码失败: ``` # 引入模块 import time import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import torchvision import torch_npu from torch_npu.npu import amp # 导入AMP模块 from torch_npu.contrib import transfer_to_npu # 使能自动迁移 # 初始化运行device device = torch.device('cuda:0') # 定义模型网络 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.net = nn.Sequential( # 卷积层 nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=1), # 池化层 nn.MaxPool2d(kernel_size=2), # 卷积层 nn.Conv2d(16, 32, 3, 1, 1), # 池化层 nn.MaxPool2d(2), # 将多维输入一维化 nn.Flatten(), nn.Linear(32*7*7, 16), # 激活函数 nn.ReLU(), nn.Linear(16, 10) ) def forward(self, x): return self.net(x) # 下载数据集 train_data = torchvision.datasets.MNIST( root='mnist', download=True, train=True, transform=torchvision.transforms.ToTensor() ) # 定义训练相关参数 batch_size = 64 model = CNN().to(device) # 定义模型 train_dataloader = DataLoader(train_data, batch_size=batch_size) # 定义DataLoader loss_func = nn.CrossEntropyLoss().to(device) # 定义损失函数 optimizer = torch.optim.SGD(model.parameters(), lr=0.1) # 定义优化器 scaler = amp.GradScaler() # 在模型、优化器定义之后,定义GradScaler epochs = 10 # 设置循环次数 # 设置循环 for epoch in range(epochs): for imgs, labels in train_dataloader: start_time = time.time() # 记录训练开始时间 imgs = imgs.to(device) # 把img数据放到指定NPU上 labels = labels.to(device) with amp.autocast(): # 把label数据放到指定NPU上 outputs = model(imgs) # 前向计算 loss = loss_func(outputs, labels) # 损失函数计算 optimizer.zero_grad() scaler.scale(loss).backward() # loss缩放并反向转播 scaler.step(optimizer) # 更新参数(自动unscaling) scaler.update() # 基于动态Loss Scale更新loss_scaling系数 loss.backward() # 损失函数反向计算 optimizer.step() # 更新优化器 # 定义保存模型 torch.save({ 'epoch': 10, 'arch': CNN, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), },'checkpoint.pth.tar') ``` 错误日志在 ``` EZ3003: No supported Ops kernel and engine are found for [MaxPoolGradWithArgmaxV144], optype [MaxPoolGradWithArgmaxV1]. Possible Cause: The operator is not supported by the system. Therefore, no hit is found in any operator information library. Solution: 1. Check that the OPP component is installed properly. 2. Submit an issue to request for the support of this operator type. TraceBack (most recent call last): build graph failed, graph id:43, ret:-1[FUNC:BuildModelWithGraphId][FILE:ge_generator.cc][LINE:1615] [Build][SingleOpModel]call ge interface generator.BuildSingleOpModel failed. ge result = 4294967295[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] [Build][Op]Fail to build op model[FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] build op model failed, result = 500002[FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] terminate called after throwing an instance of 'std::runtime_error' what(): ASCEND kernel errors might be asynchronously reported at some other API call, so the stacktrace below is not the root cause of the problem. For getting the stacktrace of OP in PyTorch, consider passing ASCEND_LAUNCH_BLOCKING=1. ``` 请问原因是什么,代码参考来源于https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/modeldevpt/ptmigr/AImpug_0003.html
评论 (
4
)
登录
后才可以发表评论
状态
DONE
TODO
ACCEPTED
Analysing
Feedback
WIP
Replied
CLOSED
DONE
REJECTED
负责人
未设置
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
分支 (79)
标签 (186)
master
v2.8.0
v2.1.0
v2.6.0
v2.7.1
v2.5.1
v2.6.0-7.1.0
v2.5.1-7.1.0
v2.1.0-7.1.0
revert-merge-23967-master
revert-merge-23966-v2.8.0
revert-merge-23965-v2.7.1
revert-merge-23964-v2.6.0
revert-merge-23962-v2.5.1
revert-merge-23789-v2.1.0
v2.1.0-7.0.0
v2.4.0-7.0.0
v2.4.0
v2.3.1
v2.3.1-7.0.0
v2.5.1-7.0.0
v2.4.0-6.0.0
v2.3.1-6.0.0
v2.1.0-6.0.0
v2.1.0-6.0.rc3
v2.3.1-6.0.rc3
v2.4.0-6.0.rc3
v2.2.0
v1.11.0-6.0.rc1
v2.1.0-6.0.rc1
v2.2.0-6.0.rc1
v1.11.0-6.0.rc2
v2.1.0-6.0.rc2
v2.2.0-6.0.rc2
v2.3.1-6.0.rc2
v1.11.0
v2.1.0-5.0.0
v2.0.1-5.0.0
v1.11.0-5.0.0
v2.0.1
v2.1.0-5.0.rc3
v1.11.0-5.0.rc3
v2.0.1-5.0.rc3
v1.11.0-5.0.rc3.3
v1.8.1
v1.11.0-x1
v1.8.1-5.0.rc3
v1.11.0-5.0.rc2.2
v1.11.0-zj
v1.11.0-5.0.rc2.1
v2.0.1-5.0.rc2
v1.11.0-5.0.rc2
v1.8.1-5.0.rc2
v2.0.0-5.0.rc2
v1.8.1-5.0.rc1
v1.11.0-5.0.rc1
v1.11.0-yd
v1.11.0-xf
v1.11.0-infer
v1.11.0-bigkernel
v1.11.0-host_api
v1.8.1-3.0.0
v1.11.0-5.0.rc2.t100
v1.8.1-5.0.rc2.t100
v1.8.1-3.0.0-dev
v1.11.0-3.0.0
v2.0-dev
v1.8.1-3.0.rc3
v1.5.0-3.0.0
v1.5.0
v1.8.1-3.0.rc1
v1.11.0-3.0.rc3
v1.8.1-3.0.rc2
v1.5.0-3.0.rc3
v1.5.0-3.0.rc2
2.0.4.tr5
v1.5.0-3.0.rc1
2.0.2.tr5
2.0.3.tr5
v7.2.RC1.alpha002-pytorch2.8.0
v7.2.RC1.alpha002-pytorch2.7.1
v7.2.RC1.alpha002-pytorch2.6.0
v7.2.RC1.alpha002-pytorch2.1.0
v7.1.0.2-pytorch2.5.1
v7.1.0.2-pytorch2.6.0
v7.1.0.2-pytorch2.1.0
v7.0.0.1-pytorch2.4.0
v7.0.0.1-pytorch2.1.0
v7.2.RC1.alpha001-pytorch2.8.0
v7.2.RC1.alpha001-pytorch2.7.1
v7.2.RC1.alpha001-pytorch2.6.0
v7.2.RC1.alpha001-pytorch2.5.1
v7.2.RC1.alpha001-pytorch2.1.0
v7.1.0.1-pytorch2.6.0
v7.1.0.1-pytorch2.5.1
v7.1.0.1-pytorch2.1.0
v7.1.0-pytorch2.6.0
v7.1.0-pytorch2.5.1
v7.1.0-pytorch2.1.0
v7.1.RC1.alpha003-pytorch2.6.0
v7.1.RC1.alpha003-pytorch2.5.1
v7.1.RC1.alpha003-pytorch2.1.0
v7.1.RC1.alpha002-pytorch2.7.1
v7.1.RC1.alpha002-pytorch2.6.0
v7.1.RC1.alpha002-pytorch2.5.1
v7.1.RC1.alpha002-pytorch2.4.0
v7.1.RC1.alpha002-pytorch2.3.1
v7.1.RC1.alpha002-pytorch2.1.0
v6.0.0.1-pytorch2.4.0
v6.0.0.1-pytorch2.3.1
v6.0.0.1-pytorch2.1.0
v7.1.RC1.alpha001-pytorch2.6.0
v7.1.RC1.alpha001-pytorch2.5.1
v7.1.RC1.alpha001-pytorch2.4.0
v7.1.RC1.alpha001-pytorch2.3.1
v7.1.RC1.alpha001-pytorch2.1.0
v7.0.0-pytorch2.5.1
v7.0.0-pytorch2.4.0
v7.0.0-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.6.0
v7.0.0-pytorch2.1.0
v7.0.RC1.alpha002-pytorch2.5.1
v7.0.RC1.alpha002-pytorch2.4.0
v7.0.RC1.alpha002-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.5.1
v7.0.RC1.alpha001-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.4.0
v7.0.RC1.alpha001-pytorch2.3.1
v6.0.0-pytorch2.4.0
v6.0.0-pytorch2.3.1
v6.0.0-pytorch2.1.0
v6.0.0.alpha003-pytorch2.4.0
v6.0.0.alpha003-pytorch2.3.1
v6.0.0.alpha003-pytorch2.1.0
v6.0.0.alpha002-pytorch2.4.0
v6.0.0.alpha002-pytorch2.3.1
v6.0.0.alpha002-pytorch2.1.0
v6.0.0.alpha001-pytorch2.5.1
v6.0.rc3-pytorch2.4.0
v6.0.rc3-pytorch2.3.1
v6.0.rc3-pytorch2.1.0
v6.0.0.alpha001-pytorch2.4.0
v6.0.0.alpha001-pytorch2.3.1
v6.0.0.alpha001-pytorch2.1.0
v6.0.rc2.1-pytorch1.11.0
v6.0.rc2.1-pytorch2.3.1
v6.0.rc2.1-pytorch2.2.0
v6.0.rc2.1-pytorch2.1.0
v6.0.rc3.alpha003-pytorch2.3.1
v6.0.rc3.alpha003-pytorch2.1.0
v6.0.rc3.alpha001-pytorch2.4.0
v6.0.rc3.alpha002-pytorch2.3.1
v6.0.rc3.alpha002-pytorch2.2.0
v6.0.rc3.alpha002-pytorch2.1.0
v6.0.rc3.alpha002-pytorch1.11.0
v6.0.rc2-pytorch2.1.0
v6.0.rc2-pytorch2.3.1
v6.0.rc2-pytorch2.2.0
v6.0.rc2-pytorch1.11.0
v6.0.rc3.alpha001-pytorch2.3.1
v6.0.rc3.alpha001-pytorch2.2.0
v6.0.rc3.alpha001-pytorch2.1.0
v6.0.rc3.alpha001-pytorch1.11.0
v6.0.rc2.alpha002-pytorch2.3.1
v6.0.rc2.alpha003-pytorch1.11.0
v6.0.rc2.alpha003-pytorch2.2.0
v6.0.rc2.alpha003-pytorch2.1.0
v6.0.rc1.1-pytorch2.2.0
v6.0.rc1.1-pytorch2.1.0
v6.0.rc1.1-pytorch1.11.0
v5.0.1.2-pytorch1.11.0
v5.0.1.2-pytorch2.1.0
v5.0.1.2-pytorch2.0.1
v6.0.rc2.alpha002-pytorch2.2.0
v6.0.rc2.alpha002-pytorch2.1.0
v6.0.rc2.alpha002-pytorch1.11.0
v6.0.rc1-pytorch2.2.0
v6.0.rc1-pytorch2.1.0
v6.0.rc1-pytorch1.11.0
v6.0.rc2.alpha001-pytorch2.2.0
v6.0.rc2.alpha001-pytorch2.1.0
v6.0.rc2.alpha001-pytorch1.11.0
v6.0.rc1.alpha003-pytorch2.0.1
v6.0.rc1.alpha003-pytorch2.1.0
v5.0.1.1-pytorch2.0.1
v5.0.1.1-pytorch1.11.0
v5.0.1.1-pytorch2.1.0
v6.0.rc1.alpha003-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.1.0
v6.0.rc1.alpha002-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.0.1
v6.0.rc1.alpha001-pytorch2.2.0
v5.0.1-pytorch2.1.0
v5.0.1-pytorch2.0.1
v5.0.1-pytorch1.11.0
v6.0.RC1.alpha001-pytorch2.0.1
v6.0.RC1.alpha001-pytorch2.1.0
v6.0.RC1.alpha001-pytorch1.11.0
v5.0.0-pytorch2.1.0
v5.0.0-pytorch2.0.1
v5.0.0-pytorch1.11.0
v5.0.0.alpha003-pytorch2.1.0
v5.0.0.alpha003-pytorch2.0.1
v5.0.0.alpha003-pytorch1.11.0
v5.0.rc3.3-pytorch1.11.0
v5.0.rc3.2-pytorch1.11.0
v5.0.0.alpha002-pytorch2.1.0
v5.0.0.alpha002-pytorch2.0.1
v5.0.0.alpha002-pytorch1.11.0
v5.0.rc3.1-pytorch1.11.0
v5.0.0.alpha001-pytorch2.1.0
v5.0.0.alpha001-pytorch2.0.1
v5.0.0.alpha001-pytorch1.11.0
v5.0.rc3-pytorch2.1.0
v5.0.rc3-pytorch2.0.1
v5.0.rc3-pytorch1.11.0
v5.0.rc3.alpha003-pytorch2.0.1
v5.0.rc3.alpha003-pytorch1.11.0
v5.0.rc3.alpha003-pytorch1.8.1
v5.0.rc2.2-pytorch1.11.0
v5.0.rc2.1-pytorch1.11.0
v5.0.rc3.alpha002-pytorch2.0.1
v5.0.rc3.alpha002-pytorch1.11.0
v5.0.rc3.alpha002-pytorch1.8.1
v5.0.rc2-pytorch2.0.1
v5.0.rc2-pytorch1.11.0
v5.0.rc2-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.8.1
v5.0.rc2.alpha002-pytorch1.11.0
v5.0.rc2.alpha002-pytorch1.8.1
v5.0.rc1.alpha003-pytorch1.11.0
v5.0.rc1.alpha003-pytorch1.8.1
v5.0.rc1-pytorch1.11.0
v5.0.rc1-pytorch1.8.1
v5.0.rc1.alpha002-pytorch1.11.0
v5.0.rc1.alpha002-pytorch1.8.1
v5.0.rc1.alpha001-pytorch1.11.0
v5.0.rc1.alpha001-pytorch1.8.1
v3.0.0-pytorch1.11.0
v3.0.0-pytorch1.8.1
v3.0.0-pytorch1.5.0
v3.0.alpha006-pytorch1.8.1
v3.0.alpha005-pytorch1.8.1
v3.0.alpha003-pytorch1.8.1
v3.0.rc3-pytorch1.11.0
v3.0.rc3-pytorch1.8.1
v3.0.rc3-pytorch1.5.0
v3.0.rc2-pytorch1.8.1
v3.0.rc2-pytorch1.5.0
v3.0.rc1-pytorch1.8.1
v3.0.rc1-pytorch1.5.0
v2.0.4
v2.0.4-rc2
v2.0.4-rc1
v2.0.3.1
v2.0.3
v2.0.3-rc4
v2.0.3-rc3
v2.0.3-rc2
v2.0.3-rc1
v2.0.2
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
Python
1
https://gitee.com/ascend/pytorch.git
git@gitee.com:ascend/pytorch.git
ascend
pytorch
pytorch
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册