登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
Gitee 年度开源项目评选中~
代码拉取完成,页面将自动刷新
仓库状态说明
开源项目
>
人工智能
>
机器学习/深度学习
&&
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
89
Star
657
Fork
1.5K
Ascend
/
pytorch
暂停
代码
Issues
41
Pull Requests
350
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
训练lenet报错EH9999: Inner Error!
DONE
#IACE5S
训练问题
jokerlb
创建于
2024-07-11 22:22
一、问题现象(附报错日志上下文): Exception has occurred: RuntimeError The Inner error is reported as above. Since the operator is called asynchronously, the stacktrace may be inaccurate. If you want to get the accurate stacktrace, pleace set the environment variable ASCEND_LAUNCH_BLOCKING=1. [ERROR] 2024-07-11-22:15:02 (PID:1466203, Device:0, RankID:-1) ERR00005 PTA internal error File "/home/liwb/code/LeNet-5/LeNet_5_train.py", line 65, in train loss = loss_fn(pred, y) File "/home/liwb/code/LeNet-5/LeNet_5_train.py", line 106, in <module> loss = train(train_dataloader, model_lenet5, loss_fn, optimizer) RuntimeError: The Inner error is reported as above. Since the operator is called asynchronously, the stacktrace may be inaccurate. If you want to get the accurate stacktrace, pleace set the environment variable ASCEND_LAUNCH_BLOCKING=1. [ERROR] 2024-07-11-22:15:02 (PID:1466203, Device:0, RankID:-1) ERR00005 PTA internal error  二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): CANN 7.0.0 --Tensorflow/Pytorch/MindSpore 版本:Pytorch 2.1.0 --Python 版本 (e.g., Python 3.7.5):3.10.14 -- MindStudio版本 (e.g., MindStudio 2.0.0 (beta3)): / --操作系统版本 (e.g., Ubuntu 18.04): Ubuntu 22.04 三、测试步骤: lenet训练分了两个.py文件,具体如下: ### LeNet_5.py: ``` import torch import torch_npu from torch import nn from torch.utils.data import DataLoader import torch_npu.npu from torchvision import datasets from torchvision.transforms import ToTensor class LeNet5(nn.Module): def __init__(self, num_classes): super(LeNet5, self).__init__() self.conv1=nn.Sequential( nn.Conv2d(1,6,kernel_size=5,stride=1,padding=2,dtype=torch.float32), nn.ReLU(), ) self.pooling1=nn.AvgPool2d(kernel_size=2,stride=2) self.conv2=nn.Sequential( nn.Conv2d(6,16,kernel_size=5,stride=1,dtype=torch.float32), nn.ReLU(), ) self.pooling2=nn.AvgPool2d(kernel_size=2,stride=2) self.fc1 =nn.Sequential( nn.Linear(400, 120,dtype=torch.float32), nn.ReLU(), ) self.fc2 =nn.Sequential( nn.Linear(120, 84), nn.ReLU(), ) self.fc3= nn.Linear(84, num_classes) def forward(self, x, num_classes): out = self.conv1(x) out = self.pooling1(out) out = self.conv2(out) out = self.pooling2(out) out = torch.flatten(out,1) nn.Linear(400, 120,dtype=torch.float32) nn.ReLU() nn.Linear(120, 84) nn.ReLU() nn.Linear(84, num_classes) return out ``` ### LeNet_5_train.py ``` import torch import torch_npu import torch_npu.contrib import torch_npu.contrib.transfer_to_npu from torch_npu.npu import amp # 导入AMP模块 from torch_npu.contrib import transfer_to_npu # 使能自动迁移 from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor from LeNet_5 import LeNet5 training_data = datasets.MNIST( root="MNIST_data", train=True, download=True, transform=ToTensor() ) test_data = datasets.MNIST( root="MNIST_data", train=False, download=True, transform=ToTensor() ) batch_size = 15 train_dataloader = DataLoader(training_data, batch_size=batch_size) test_dataloader = DataLoader(test_data, batch_size=batch_size) device = ( "npu" if torch_npu.npu.is_available() else "cpu" ) print(f"Using {device} device") model_lenet5 = LeNet5(num_classes=10).to(device) print(model_lenet5) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model_lenet5.parameters(), lr=1e-3) scaler = amp.GradScaler() # 在模型、优化器定义之后,定义GradScaler def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) losses_record = [] model.train() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) with amp.autocast(): pred = model(X,10) loss = loss_fn(pred, y) scaler.scale(loss).backward() # loss缩放并反向转播 scaler.step(optimizer) # 更新参数(自动unscaling) scaler.update() # 基于动态Loss Scale更新loss_scaling系数 optimizer.zero_grad() if batch % 100 == 0: loss, current = loss.item(), (batch + 1) * len(X) losses_record.append(loss) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") return losses_record def test(dataloader, model, loss_fn): size = len(dataloader.dataset) num_batches = len(dataloader) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= num_batches correct /= size print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") print(f"Using {device} device") epochs = 30 losses=[] for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") loss = train(train_dataloader, model_lenet5, loss_fn, optimizer) losses = losses + loss test(test_dataloader, model_lenet5, loss_fn) print("Done!") torch.save(model_lenet5.state_dict(), "model.pth") print("Saved PyTorch Model State to model.pth") ``` 四、日志信息: ``` cd /home/liwb/code/LeNet-5 ; /usr/bin/env /home/liwb/anaconda3/envs/torch21/bin/python /home/liwb/.vscode-server/extensions/ms-python.debugpy-2024.8.0-linux-arm64/bundled/libs/debugpy/adapter/../../debugpy/launcher 41273 -- /home/liwb/code/LeNet-5/LeNet_5_train.py /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torch_npu/utils/path_manager.py:79: UserWarning: Warning: The /usr/local/Ascend/ascend-toolkit/latest owner does not match the current user. warnings.warn(f"Warning: The {path} owner does not match the current user.") /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torch_npu/utils/path_manager.py:79: UserWarning: Warning: The /usr/local/Ascend/ascend-toolkit/7.0.0/aarch64-linux/ascend_toolkit_install.info owner does not match the current user. warnings.warn(f"Warning: The {path} owner does not match the current user.") /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torch_npu/contrib/transfer_to_npu.py:211: ImportWarning: ************************************************************************************************************* The torch.Tensor.cuda and torch.nn.Module.cuda are replaced with torch.Tensor.npu and torch.nn.Module.npu now.. The torch.cuda.DoubleTensor is replaced with torch.npu.FloatTensor cause the double type is not supported now.. The backend in torch.distributed.init_process_group set to hccl now.. The torch.cuda.* and torch.cuda.amp.* are replaced with torch.npu.* and torch.npu.amp.* now.. The device parameters have been replaced with npu in the function below: torch.logspace, torch.randint, torch.hann_window, torch.rand, torch.full_like, torch.ones_like, torch.rand_like, torch.randperm, torch.arange, torch.frombuffer, torch.normal, torch._empty_per_channel_affine_quantized, torch.empty_strided, torch.empty_like, torch.scalar_tensor, torch.tril_indices, torch.bartlett_window, torch.ones, torch.sparse_coo_tensor, torch.randn, torch.kaiser_window, torch.tensor, torch.triu_indices, torch.as_tensor, torch.zeros, torch.randint_like, torch.full, torch.eye, torch._sparse_csr_tensor_unsafe, torch.empty, torch._sparse_coo_tensor_unsafe, torch.blackman_window, torch.zeros_like, torch.range, torch.sparse_csr_tensor, torch.randn_like, torch.from_file, torch._cudnn_init_dropout_state, torch._empty_affine_quantized, torch.linspace, torch.hamming_window, torch.empty_quantized, torch._pin_memory, torch.autocast, torch.load, torch.Generator, torch.Tensor.new_empty, torch.Tensor.new_empty_strided, torch.Tensor.new_full, torch.Tensor.new_ones, torch.Tensor.new_tensor, torch.Tensor.new_zeros, torch.Tensor.to, torch.nn.Module.to, torch.nn.Module.to_empty ************************************************************************************************************* warnings.warn(msg, ImportWarning) /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: '/home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torchvision/image.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source? warn( Using npu device /usr/local/Ascend/ascend-toolkit/7.0.0/python/site-packages/tbe/tvm/contrib/ccec.py:769: DeprecationWarning: invalid escape sequence '\L' if not dirpath.find("AppData\Local\Temp"): LeNet5( (conv1): Sequential( (0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (1): ReLU() ) (pooling1): AvgPool2d(kernel_size=2, stride=2, padding=0) (conv2): Sequential( (0): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (1): ReLU() ) (pooling2): AvgPool2d(kernel_size=2, stride=2, padding=0) (fc1): Sequential( (0): Linear(in_features=400, out_features=120, bias=True) (1): ReLU() ) (fc2): Sequential( (0): Linear(in_features=120, out_features=84, bias=True) (1): ReLU() ) (fc3): Linear(in_features=84, out_features=10, bias=True) ) Using npu device Epoch 1 ------------------------------- EH9999: Inner Error! EH9999 [Init][Env]init env failed![FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] TraceBack (most recent call last): build op model failed, result = 500001[FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] Warning: Device do not support double dtype now, dtype cast repalce with float. ``` 请根据自己的运行环境参考以下方式搜集日志信息,如果涉及到算子开发相关的问题,建议也提供UT/ST测试和单算子集成测试相关的日志。 日志提供方式: 将日志打包后作为附件上传。若日志大小超出附件限制,则可上传至外部网盘后提供链接。 获取方法请参考wiki: https://gitee.com/ascend/modelzoo/wikis/%E5%A6%82%E4%BD%95%E8%8E%B7%E5%8F%96%E6%97%A5%E5%BF%97%E5%92%8C%E8%AE%A1%E7%AE%97%E5%9B%BE?sort_id=4097825
一、问题现象(附报错日志上下文): Exception has occurred: RuntimeError The Inner error is reported as above. Since the operator is called asynchronously, the stacktrace may be inaccurate. If you want to get the accurate stacktrace, pleace set the environment variable ASCEND_LAUNCH_BLOCKING=1. [ERROR] 2024-07-11-22:15:02 (PID:1466203, Device:0, RankID:-1) ERR00005 PTA internal error File "/home/liwb/code/LeNet-5/LeNet_5_train.py", line 65, in train loss = loss_fn(pred, y) File "/home/liwb/code/LeNet-5/LeNet_5_train.py", line 106, in <module> loss = train(train_dataloader, model_lenet5, loss_fn, optimizer) RuntimeError: The Inner error is reported as above. Since the operator is called asynchronously, the stacktrace may be inaccurate. If you want to get the accurate stacktrace, pleace set the environment variable ASCEND_LAUNCH_BLOCKING=1. [ERROR] 2024-07-11-22:15:02 (PID:1466203, Device:0, RankID:-1) ERR00005 PTA internal error  二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): CANN 7.0.0 --Tensorflow/Pytorch/MindSpore 版本:Pytorch 2.1.0 --Python 版本 (e.g., Python 3.7.5):3.10.14 -- MindStudio版本 (e.g., MindStudio 2.0.0 (beta3)): / --操作系统版本 (e.g., Ubuntu 18.04): Ubuntu 22.04 三、测试步骤: lenet训练分了两个.py文件,具体如下: ### LeNet_5.py: ``` import torch import torch_npu from torch import nn from torch.utils.data import DataLoader import torch_npu.npu from torchvision import datasets from torchvision.transforms import ToTensor class LeNet5(nn.Module): def __init__(self, num_classes): super(LeNet5, self).__init__() self.conv1=nn.Sequential( nn.Conv2d(1,6,kernel_size=5,stride=1,padding=2,dtype=torch.float32), nn.ReLU(), ) self.pooling1=nn.AvgPool2d(kernel_size=2,stride=2) self.conv2=nn.Sequential( nn.Conv2d(6,16,kernel_size=5,stride=1,dtype=torch.float32), nn.ReLU(), ) self.pooling2=nn.AvgPool2d(kernel_size=2,stride=2) self.fc1 =nn.Sequential( nn.Linear(400, 120,dtype=torch.float32), nn.ReLU(), ) self.fc2 =nn.Sequential( nn.Linear(120, 84), nn.ReLU(), ) self.fc3= nn.Linear(84, num_classes) def forward(self, x, num_classes): out = self.conv1(x) out = self.pooling1(out) out = self.conv2(out) out = self.pooling2(out) out = torch.flatten(out,1) nn.Linear(400, 120,dtype=torch.float32) nn.ReLU() nn.Linear(120, 84) nn.ReLU() nn.Linear(84, num_classes) return out ``` ### LeNet_5_train.py ``` import torch import torch_npu import torch_npu.contrib import torch_npu.contrib.transfer_to_npu from torch_npu.npu import amp # 导入AMP模块 from torch_npu.contrib import transfer_to_npu # 使能自动迁移 from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor from LeNet_5 import LeNet5 training_data = datasets.MNIST( root="MNIST_data", train=True, download=True, transform=ToTensor() ) test_data = datasets.MNIST( root="MNIST_data", train=False, download=True, transform=ToTensor() ) batch_size = 15 train_dataloader = DataLoader(training_data, batch_size=batch_size) test_dataloader = DataLoader(test_data, batch_size=batch_size) device = ( "npu" if torch_npu.npu.is_available() else "cpu" ) print(f"Using {device} device") model_lenet5 = LeNet5(num_classes=10).to(device) print(model_lenet5) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model_lenet5.parameters(), lr=1e-3) scaler = amp.GradScaler() # 在模型、优化器定义之后,定义GradScaler def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) losses_record = [] model.train() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) with amp.autocast(): pred = model(X,10) loss = loss_fn(pred, y) scaler.scale(loss).backward() # loss缩放并反向转播 scaler.step(optimizer) # 更新参数(自动unscaling) scaler.update() # 基于动态Loss Scale更新loss_scaling系数 optimizer.zero_grad() if batch % 100 == 0: loss, current = loss.item(), (batch + 1) * len(X) losses_record.append(loss) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") return losses_record def test(dataloader, model, loss_fn): size = len(dataloader.dataset) num_batches = len(dataloader) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= num_batches correct /= size print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") print(f"Using {device} device") epochs = 30 losses=[] for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") loss = train(train_dataloader, model_lenet5, loss_fn, optimizer) losses = losses + loss test(test_dataloader, model_lenet5, loss_fn) print("Done!") torch.save(model_lenet5.state_dict(), "model.pth") print("Saved PyTorch Model State to model.pth") ``` 四、日志信息: ``` cd /home/liwb/code/LeNet-5 ; /usr/bin/env /home/liwb/anaconda3/envs/torch21/bin/python /home/liwb/.vscode-server/extensions/ms-python.debugpy-2024.8.0-linux-arm64/bundled/libs/debugpy/adapter/../../debugpy/launcher 41273 -- /home/liwb/code/LeNet-5/LeNet_5_train.py /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torch_npu/utils/path_manager.py:79: UserWarning: Warning: The /usr/local/Ascend/ascend-toolkit/latest owner does not match the current user. warnings.warn(f"Warning: The {path} owner does not match the current user.") /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torch_npu/utils/path_manager.py:79: UserWarning: Warning: The /usr/local/Ascend/ascend-toolkit/7.0.0/aarch64-linux/ascend_toolkit_install.info owner does not match the current user. warnings.warn(f"Warning: The {path} owner does not match the current user.") /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torch_npu/contrib/transfer_to_npu.py:211: ImportWarning: ************************************************************************************************************* The torch.Tensor.cuda and torch.nn.Module.cuda are replaced with torch.Tensor.npu and torch.nn.Module.npu now.. The torch.cuda.DoubleTensor is replaced with torch.npu.FloatTensor cause the double type is not supported now.. The backend in torch.distributed.init_process_group set to hccl now.. The torch.cuda.* and torch.cuda.amp.* are replaced with torch.npu.* and torch.npu.amp.* now.. The device parameters have been replaced with npu in the function below: torch.logspace, torch.randint, torch.hann_window, torch.rand, torch.full_like, torch.ones_like, torch.rand_like, torch.randperm, torch.arange, torch.frombuffer, torch.normal, torch._empty_per_channel_affine_quantized, torch.empty_strided, torch.empty_like, torch.scalar_tensor, torch.tril_indices, torch.bartlett_window, torch.ones, torch.sparse_coo_tensor, torch.randn, torch.kaiser_window, torch.tensor, torch.triu_indices, torch.as_tensor, torch.zeros, torch.randint_like, torch.full, torch.eye, torch._sparse_csr_tensor_unsafe, torch.empty, torch._sparse_coo_tensor_unsafe, torch.blackman_window, torch.zeros_like, torch.range, torch.sparse_csr_tensor, torch.randn_like, torch.from_file, torch._cudnn_init_dropout_state, torch._empty_affine_quantized, torch.linspace, torch.hamming_window, torch.empty_quantized, torch._pin_memory, torch.autocast, torch.load, torch.Generator, torch.Tensor.new_empty, torch.Tensor.new_empty_strided, torch.Tensor.new_full, torch.Tensor.new_ones, torch.Tensor.new_tensor, torch.Tensor.new_zeros, torch.Tensor.to, torch.nn.Module.to, torch.nn.Module.to_empty ************************************************************************************************************* warnings.warn(msg, ImportWarning) /home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: '/home/liwb/anaconda3/envs/torch21/lib/python3.10/site-packages/torchvision/image.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source? warn( Using npu device /usr/local/Ascend/ascend-toolkit/7.0.0/python/site-packages/tbe/tvm/contrib/ccec.py:769: DeprecationWarning: invalid escape sequence '\L' if not dirpath.find("AppData\Local\Temp"): LeNet5( (conv1): Sequential( (0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (1): ReLU() ) (pooling1): AvgPool2d(kernel_size=2, stride=2, padding=0) (conv2): Sequential( (0): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (1): ReLU() ) (pooling2): AvgPool2d(kernel_size=2, stride=2, padding=0) (fc1): Sequential( (0): Linear(in_features=400, out_features=120, bias=True) (1): ReLU() ) (fc2): Sequential( (0): Linear(in_features=120, out_features=84, bias=True) (1): ReLU() ) (fc3): Linear(in_features=84, out_features=10, bias=True) ) Using npu device Epoch 1 ------------------------------- EH9999: Inner Error! EH9999 [Init][Env]init env failed![FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] TraceBack (most recent call last): build op model failed, result = 500001[FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145] Warning: Device do not support double dtype now, dtype cast repalce with float. ``` 请根据自己的运行环境参考以下方式搜集日志信息,如果涉及到算子开发相关的问题,建议也提供UT/ST测试和单算子集成测试相关的日志。 日志提供方式: 将日志打包后作为附件上传。若日志大小超出附件限制,则可上传至外部网盘后提供链接。 获取方法请参考wiki: https://gitee.com/ascend/modelzoo/wikis/%E5%A6%82%E4%BD%95%E8%8E%B7%E5%8F%96%E6%97%A5%E5%BF%97%E5%92%8C%E8%AE%A1%E7%AE%97%E5%9B%BE?sort_id=4097825
评论 (
2
)
登录
后才可以发表评论
状态
DONE
TODO
ACCEPTED
Analysing
Feedback
WIP
Replied
CLOSED
DONE
REJECTED
负责人
未设置
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
分支 (79)
标签 (186)
master
v2.8.0
v2.1.0
v2.6.0
v2.7.1
v2.5.1
v2.6.0-7.1.0
v2.5.1-7.1.0
v2.1.0-7.1.0
revert-merge-23967-master
revert-merge-23966-v2.8.0
revert-merge-23965-v2.7.1
revert-merge-23964-v2.6.0
revert-merge-23962-v2.5.1
revert-merge-23789-v2.1.0
v2.1.0-7.0.0
v2.4.0-7.0.0
v2.4.0
v2.3.1
v2.3.1-7.0.0
v2.5.1-7.0.0
v2.4.0-6.0.0
v2.3.1-6.0.0
v2.1.0-6.0.0
v2.1.0-6.0.rc3
v2.3.1-6.0.rc3
v2.4.0-6.0.rc3
v2.2.0
v1.11.0-6.0.rc1
v2.1.0-6.0.rc1
v2.2.0-6.0.rc1
v1.11.0-6.0.rc2
v2.1.0-6.0.rc2
v2.2.0-6.0.rc2
v2.3.1-6.0.rc2
v1.11.0
v2.1.0-5.0.0
v2.0.1-5.0.0
v1.11.0-5.0.0
v2.0.1
v2.1.0-5.0.rc3
v1.11.0-5.0.rc3
v2.0.1-5.0.rc3
v1.11.0-5.0.rc3.3
v1.8.1
v1.11.0-x1
v1.8.1-5.0.rc3
v1.11.0-5.0.rc2.2
v1.11.0-zj
v1.11.0-5.0.rc2.1
v2.0.1-5.0.rc2
v1.11.0-5.0.rc2
v1.8.1-5.0.rc2
v2.0.0-5.0.rc2
v1.8.1-5.0.rc1
v1.11.0-5.0.rc1
v1.11.0-yd
v1.11.0-xf
v1.11.0-infer
v1.11.0-bigkernel
v1.11.0-host_api
v1.8.1-3.0.0
v1.11.0-5.0.rc2.t100
v1.8.1-5.0.rc2.t100
v1.8.1-3.0.0-dev
v1.11.0-3.0.0
v2.0-dev
v1.8.1-3.0.rc3
v1.5.0-3.0.0
v1.5.0
v1.8.1-3.0.rc1
v1.11.0-3.0.rc3
v1.8.1-3.0.rc2
v1.5.0-3.0.rc3
v1.5.0-3.0.rc2
2.0.4.tr5
v1.5.0-3.0.rc1
2.0.2.tr5
2.0.3.tr5
v7.2.RC1.alpha002-pytorch2.8.0
v7.2.RC1.alpha002-pytorch2.7.1
v7.2.RC1.alpha002-pytorch2.6.0
v7.2.RC1.alpha002-pytorch2.1.0
v7.1.0.2-pytorch2.5.1
v7.1.0.2-pytorch2.6.0
v7.1.0.2-pytorch2.1.0
v7.0.0.1-pytorch2.4.0
v7.0.0.1-pytorch2.1.0
v7.2.RC1.alpha001-pytorch2.8.0
v7.2.RC1.alpha001-pytorch2.7.1
v7.2.RC1.alpha001-pytorch2.6.0
v7.2.RC1.alpha001-pytorch2.5.1
v7.2.RC1.alpha001-pytorch2.1.0
v7.1.0.1-pytorch2.6.0
v7.1.0.1-pytorch2.5.1
v7.1.0.1-pytorch2.1.0
v7.1.0-pytorch2.6.0
v7.1.0-pytorch2.5.1
v7.1.0-pytorch2.1.0
v7.1.RC1.alpha003-pytorch2.6.0
v7.1.RC1.alpha003-pytorch2.5.1
v7.1.RC1.alpha003-pytorch2.1.0
v7.1.RC1.alpha002-pytorch2.7.1
v7.1.RC1.alpha002-pytorch2.6.0
v7.1.RC1.alpha002-pytorch2.5.1
v7.1.RC1.alpha002-pytorch2.4.0
v7.1.RC1.alpha002-pytorch2.3.1
v7.1.RC1.alpha002-pytorch2.1.0
v6.0.0.1-pytorch2.4.0
v6.0.0.1-pytorch2.3.1
v6.0.0.1-pytorch2.1.0
v7.1.RC1.alpha001-pytorch2.6.0
v7.1.RC1.alpha001-pytorch2.5.1
v7.1.RC1.alpha001-pytorch2.4.0
v7.1.RC1.alpha001-pytorch2.3.1
v7.1.RC1.alpha001-pytorch2.1.0
v7.0.0-pytorch2.5.1
v7.0.0-pytorch2.4.0
v7.0.0-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.6.0
v7.0.0-pytorch2.1.0
v7.0.RC1.alpha002-pytorch2.5.1
v7.0.RC1.alpha002-pytorch2.4.0
v7.0.RC1.alpha002-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.5.1
v7.0.RC1.alpha001-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.4.0
v7.0.RC1.alpha001-pytorch2.3.1
v6.0.0-pytorch2.4.0
v6.0.0-pytorch2.3.1
v6.0.0-pytorch2.1.0
v6.0.0.alpha003-pytorch2.4.0
v6.0.0.alpha003-pytorch2.3.1
v6.0.0.alpha003-pytorch2.1.0
v6.0.0.alpha002-pytorch2.4.0
v6.0.0.alpha002-pytorch2.3.1
v6.0.0.alpha002-pytorch2.1.0
v6.0.0.alpha001-pytorch2.5.1
v6.0.rc3-pytorch2.4.0
v6.0.rc3-pytorch2.3.1
v6.0.rc3-pytorch2.1.0
v6.0.0.alpha001-pytorch2.4.0
v6.0.0.alpha001-pytorch2.3.1
v6.0.0.alpha001-pytorch2.1.0
v6.0.rc2.1-pytorch1.11.0
v6.0.rc2.1-pytorch2.3.1
v6.0.rc2.1-pytorch2.2.0
v6.0.rc2.1-pytorch2.1.0
v6.0.rc3.alpha003-pytorch2.3.1
v6.0.rc3.alpha003-pytorch2.1.0
v6.0.rc3.alpha001-pytorch2.4.0
v6.0.rc3.alpha002-pytorch2.3.1
v6.0.rc3.alpha002-pytorch2.2.0
v6.0.rc3.alpha002-pytorch2.1.0
v6.0.rc3.alpha002-pytorch1.11.0
v6.0.rc2-pytorch2.1.0
v6.0.rc2-pytorch2.3.1
v6.0.rc2-pytorch2.2.0
v6.0.rc2-pytorch1.11.0
v6.0.rc3.alpha001-pytorch2.3.1
v6.0.rc3.alpha001-pytorch2.2.0
v6.0.rc3.alpha001-pytorch2.1.0
v6.0.rc3.alpha001-pytorch1.11.0
v6.0.rc2.alpha002-pytorch2.3.1
v6.0.rc2.alpha003-pytorch1.11.0
v6.0.rc2.alpha003-pytorch2.2.0
v6.0.rc2.alpha003-pytorch2.1.0
v6.0.rc1.1-pytorch2.2.0
v6.0.rc1.1-pytorch2.1.0
v6.0.rc1.1-pytorch1.11.0
v5.0.1.2-pytorch1.11.0
v5.0.1.2-pytorch2.1.0
v5.0.1.2-pytorch2.0.1
v6.0.rc2.alpha002-pytorch2.2.0
v6.0.rc2.alpha002-pytorch2.1.0
v6.0.rc2.alpha002-pytorch1.11.0
v6.0.rc1-pytorch2.2.0
v6.0.rc1-pytorch2.1.0
v6.0.rc1-pytorch1.11.0
v6.0.rc2.alpha001-pytorch2.2.0
v6.0.rc2.alpha001-pytorch2.1.0
v6.0.rc2.alpha001-pytorch1.11.0
v6.0.rc1.alpha003-pytorch2.0.1
v6.0.rc1.alpha003-pytorch2.1.0
v5.0.1.1-pytorch2.0.1
v5.0.1.1-pytorch1.11.0
v5.0.1.1-pytorch2.1.0
v6.0.rc1.alpha003-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.1.0
v6.0.rc1.alpha002-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.0.1
v6.0.rc1.alpha001-pytorch2.2.0
v5.0.1-pytorch2.1.0
v5.0.1-pytorch2.0.1
v5.0.1-pytorch1.11.0
v6.0.RC1.alpha001-pytorch2.0.1
v6.0.RC1.alpha001-pytorch2.1.0
v6.0.RC1.alpha001-pytorch1.11.0
v5.0.0-pytorch2.1.0
v5.0.0-pytorch2.0.1
v5.0.0-pytorch1.11.0
v5.0.0.alpha003-pytorch2.1.0
v5.0.0.alpha003-pytorch2.0.1
v5.0.0.alpha003-pytorch1.11.0
v5.0.rc3.3-pytorch1.11.0
v5.0.rc3.2-pytorch1.11.0
v5.0.0.alpha002-pytorch2.1.0
v5.0.0.alpha002-pytorch2.0.1
v5.0.0.alpha002-pytorch1.11.0
v5.0.rc3.1-pytorch1.11.0
v5.0.0.alpha001-pytorch2.1.0
v5.0.0.alpha001-pytorch2.0.1
v5.0.0.alpha001-pytorch1.11.0
v5.0.rc3-pytorch2.1.0
v5.0.rc3-pytorch2.0.1
v5.0.rc3-pytorch1.11.0
v5.0.rc3.alpha003-pytorch2.0.1
v5.0.rc3.alpha003-pytorch1.11.0
v5.0.rc3.alpha003-pytorch1.8.1
v5.0.rc2.2-pytorch1.11.0
v5.0.rc2.1-pytorch1.11.0
v5.0.rc3.alpha002-pytorch2.0.1
v5.0.rc3.alpha002-pytorch1.11.0
v5.0.rc3.alpha002-pytorch1.8.1
v5.0.rc2-pytorch2.0.1
v5.0.rc2-pytorch1.11.0
v5.0.rc2-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.8.1
v5.0.rc2.alpha002-pytorch1.11.0
v5.0.rc2.alpha002-pytorch1.8.1
v5.0.rc1.alpha003-pytorch1.11.0
v5.0.rc1.alpha003-pytorch1.8.1
v5.0.rc1-pytorch1.11.0
v5.0.rc1-pytorch1.8.1
v5.0.rc1.alpha002-pytorch1.11.0
v5.0.rc1.alpha002-pytorch1.8.1
v5.0.rc1.alpha001-pytorch1.11.0
v5.0.rc1.alpha001-pytorch1.8.1
v3.0.0-pytorch1.11.0
v3.0.0-pytorch1.8.1
v3.0.0-pytorch1.5.0
v3.0.alpha006-pytorch1.8.1
v3.0.alpha005-pytorch1.8.1
v3.0.alpha003-pytorch1.8.1
v3.0.rc3-pytorch1.11.0
v3.0.rc3-pytorch1.8.1
v3.0.rc3-pytorch1.5.0
v3.0.rc2-pytorch1.8.1
v3.0.rc2-pytorch1.5.0
v3.0.rc1-pytorch1.8.1
v3.0.rc1-pytorch1.5.0
v2.0.4
v2.0.4-rc2
v2.0.4-rc1
v2.0.3.1
v2.0.3
v2.0.3-rc4
v2.0.3-rc3
v2.0.3-rc2
v2.0.3-rc1
v2.0.2
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
Python
1
https://gitee.com/ascend/pytorch.git
git@gitee.com:ascend/pytorch.git
ascend
pytorch
pytorch
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册