登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
2025 Gitee 年度开源项目评选投票进行中,快为你的心仪项目助力!
代码拉取完成,页面将自动刷新
仓库状态说明
开源项目
>
人工智能
>
机器学习/深度学习
&&
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
89
Star
657
Fork
1.5K
Ascend
/
pytorch
暂停
代码
Issues
41
Pull Requests
350
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
使用llama factory sft qwen2-7b时报错E40024: 2025-02-20-14:05:46.947.014 Failed call Python Func/Meathod [get_binfile_sha256_hash_from_c],
DONE
#IBNOZS
训练问题
咕咕咕
创建于
2025-02-20 17:22
一、问题现象(附报错日志上下文): 在使用llama factory sft qwen2-7b时报错: ```text File "/home/goo/project/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> launch() File "/home/goo/project/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch run_exp() File "/home/goo/project/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/home/goo/project/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/home/goo/project/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 102, in run_sft train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 2241, in train return inner_training_loop( File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 2548, in _inner_training_loop tr_loss_step = self.training_step(model, inputs, num_items_in_batch) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 3698, in training_step loss = self.compute_loss(model, inputs, num_items_in_batch=num_items_in_batch) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 3759, in compute_loss outputs = model(**inputs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/deepspeed/utils/nvtx.py", line 18, in wrapped_fn ret_val = func(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/deepspeed/runtime/engine.py", line 1914, in forward loss = self.module(*inputs, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl result = forward_call(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/utils/deprecation.py", line 172, in wrapped_func return func(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 877, in forward loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/loss/loss_utils.py", line 47, in ForCausalLMLoss loss = fixed_cross_entropy(logits, shift_labels, num_items_in_batch, ignore_index, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/loss/loss_utils.py", line 26, in fixed_cross_entropy loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/functional.py", line 3053, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) RuntimeError: malloc:torch_npu/csrc/core/npu/NPUCachingAllocator.cpp:879 NPU error, error code is 507899 [ERROR] 2025-02-20-16:53:06 (PID:46075, Device:1, RankID:1) ERR00100 PTA call acl api failed [Error]: An internal error occurs in the Driver module. Rectify the fault based on the error information in the ascend log. E40024: 2025-02-20-14:05:46.947.014 Failed call Python Func/Meathod [get_binfile_sha256_hash_from_c], Reason[SystemError: PY_SSIZE_T_CLEAN macro must be defined for '#' formats ] Possible Cause: The Python Func/Meathod does not exist. TraceBack (most recent call last): Failed to allocate memory. rtMalloc execute failed, reason=[driver error:out of memory][FUNC:FuncErrorReason][FILE:error_message_manage.cc][LINE:53] alloc device memory failed, runtime result = 207001[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] [drv api] halMemGetInfo failed: device_id=5, type=2, drvRetCode=17![FUNC:MemGetInfoEx][FILE:npu_driver.cc][LINE:2017] rtMemGetInfoEx execute failed, reason=[driver error:internal error][FUNC:FuncErrorReason][FILE:error_message_manage.cc][LINE:53] get memory information failed, runtime result = 507899[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] ``` 二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): 8.0.1RC3 --Tensorflow/Pytorch/MindSpore 版本: pytorch==2.1.0 pytorch_npu==2.1.0.post3 --Python 版本 (e.g., Python 3.7.5):3.10.18 -- MindStudio版本 (e.g., MindStudio 2.0.0 (beta3)): --操作系统版本 (e.g., Ubuntu 18.04):eulerosv2r8.aarch64 三、测试步骤: 1.测试环境 4卡910A 2.使用训练的配置文件: ## llamafactory配置文件: ```yaml cutoff_len: 2048 dataset: identity,tool_identify,glaive_toolcall_zh_demo dataset_dir: /home/goo/project/dataset ddp_timeout: 180000000 deepspeed: /home/goo/project/train_config/ds_z3_offload_config_copy.json do_train: true eval_steps: 100 eval_strategy: steps finetuning_type: full flash_attn: auto fp16: true gradient_accumulation_steps: 2 include_num_input_tokens_seen: true learning_rate: 1.0e-5 logging_steps: 1 lr_scheduler_type: cosine max_grad_norm: 1.0 max_samples: 100000 model_name_or_path: /home/goo/models/Qwen/Qwen2-7B-Instruct num_train_epochs: 2.0 optim: adamw_torch output_dir: saves/Qwen2-7B-Instruct/full/train_identify overwrite_output_dir: true packing: false per_device_eval_batch_size: 8 per_device_train_batch_size: 8 plot_loss: true preprocessing_num_workers: 8 report_to: none save_steps: 100 stage: sft template: qwen trust_remote_code: true val_size: 0.03 warmup_steps: 100 ``` ## Deepspeed文件 ```json { "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "zero_allow_untested_optimizer": true, "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true } } ``` 四、日志信息: 见评论区附件
一、问题现象(附报错日志上下文): 在使用llama factory sft qwen2-7b时报错: ```text File "/home/goo/project/LLaMA-Factory/src/llamafactory/launcher.py", line 23, in <module> launch() File "/home/goo/project/LLaMA-Factory/src/llamafactory/launcher.py", line 19, in launch run_exp() File "/home/goo/project/LLaMA-Factory/src/llamafactory/train/tuner.py", line 93, in run_exp _training_function(config={"args": args, "callbacks": callbacks}) File "/home/goo/project/LLaMA-Factory/src/llamafactory/train/tuner.py", line 67, in _training_function run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) File "/home/goo/project/LLaMA-Factory/src/llamafactory/train/sft/workflow.py", line 102, in run_sft train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 2241, in train return inner_training_loop( File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 2548, in _inner_training_loop tr_loss_step = self.training_step(model, inputs, num_items_in_batch) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 3698, in training_step loss = self.compute_loss(model, inputs, num_items_in_batch=num_items_in_batch) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/trainer.py", line 3759, in compute_loss outputs = model(**inputs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/deepspeed/utils/nvtx.py", line 18, in wrapped_fn ret_val = func(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/deepspeed/runtime/engine.py", line 1914, in forward loss = self.module(*inputs, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl result = forward_call(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/utils/deprecation.py", line 172, in wrapped_func return func(*args, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 877, in forward loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/loss/loss_utils.py", line 47, in ForCausalLMLoss loss = fixed_cross_entropy(logits, shift_labels, num_items_in_batch, ignore_index, **kwargs) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/transformers/loss/loss_utils.py", line 26, in fixed_cross_entropy loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction) File "/root/miniconda3/envs/project/lib/python3.10/site-packages/torch/nn/functional.py", line 3053, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) RuntimeError: malloc:torch_npu/csrc/core/npu/NPUCachingAllocator.cpp:879 NPU error, error code is 507899 [ERROR] 2025-02-20-16:53:06 (PID:46075, Device:1, RankID:1) ERR00100 PTA call acl api failed [Error]: An internal error occurs in the Driver module. Rectify the fault based on the error information in the ascend log. E40024: 2025-02-20-14:05:46.947.014 Failed call Python Func/Meathod [get_binfile_sha256_hash_from_c], Reason[SystemError: PY_SSIZE_T_CLEAN macro must be defined for '#' formats ] Possible Cause: The Python Func/Meathod does not exist. TraceBack (most recent call last): Failed to allocate memory. rtMalloc execute failed, reason=[driver error:out of memory][FUNC:FuncErrorReason][FILE:error_message_manage.cc][LINE:53] alloc device memory failed, runtime result = 207001[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] [drv api] halMemGetInfo failed: device_id=5, type=2, drvRetCode=17![FUNC:MemGetInfoEx][FILE:npu_driver.cc][LINE:2017] rtMemGetInfoEx execute failed, reason=[driver error:internal error][FUNC:FuncErrorReason][FILE:error_message_manage.cc][LINE:53] get memory information failed, runtime result = 507899[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] ``` 二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): 8.0.1RC3 --Tensorflow/Pytorch/MindSpore 版本: pytorch==2.1.0 pytorch_npu==2.1.0.post3 --Python 版本 (e.g., Python 3.7.5):3.10.18 -- MindStudio版本 (e.g., MindStudio 2.0.0 (beta3)): --操作系统版本 (e.g., Ubuntu 18.04):eulerosv2r8.aarch64 三、测试步骤: 1.测试环境 4卡910A 2.使用训练的配置文件: ## llamafactory配置文件: ```yaml cutoff_len: 2048 dataset: identity,tool_identify,glaive_toolcall_zh_demo dataset_dir: /home/goo/project/dataset ddp_timeout: 180000000 deepspeed: /home/goo/project/train_config/ds_z3_offload_config_copy.json do_train: true eval_steps: 100 eval_strategy: steps finetuning_type: full flash_attn: auto fp16: true gradient_accumulation_steps: 2 include_num_input_tokens_seen: true learning_rate: 1.0e-5 logging_steps: 1 lr_scheduler_type: cosine max_grad_norm: 1.0 max_samples: 100000 model_name_or_path: /home/goo/models/Qwen/Qwen2-7B-Instruct num_train_epochs: 2.0 optim: adamw_torch output_dir: saves/Qwen2-7B-Instruct/full/train_identify overwrite_output_dir: true packing: false per_device_eval_batch_size: 8 per_device_train_batch_size: 8 plot_loss: true preprocessing_num_workers: 8 report_to: none save_steps: 100 stage: sft template: qwen trust_remote_code: true val_size: 0.03 warmup_steps: 100 ``` ## Deepspeed文件 ```json { "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "zero_allow_untested_optimizer": true, "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true } } ``` 四、日志信息: 见评论区附件
评论 (
4
)
登录
后才可以发表评论
状态
DONE
TODO
ACCEPTED
Analysing
Feedback
WIP
Replied
CLOSED
DONE
REJECTED
负责人
未设置
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
分支 (79)
标签 (186)
master
v2.8.0
v2.1.0
v2.6.0
v2.7.1
v2.5.1
v2.6.0-7.1.0
v2.5.1-7.1.0
v2.1.0-7.1.0
revert-merge-23967-master
revert-merge-23966-v2.8.0
revert-merge-23965-v2.7.1
revert-merge-23964-v2.6.0
revert-merge-23962-v2.5.1
revert-merge-23789-v2.1.0
v2.1.0-7.0.0
v2.4.0-7.0.0
v2.4.0
v2.3.1
v2.3.1-7.0.0
v2.5.1-7.0.0
v2.4.0-6.0.0
v2.3.1-6.0.0
v2.1.0-6.0.0
v2.1.0-6.0.rc3
v2.3.1-6.0.rc3
v2.4.0-6.0.rc3
v2.2.0
v1.11.0-6.0.rc1
v2.1.0-6.0.rc1
v2.2.0-6.0.rc1
v1.11.0-6.0.rc2
v2.1.0-6.0.rc2
v2.2.0-6.0.rc2
v2.3.1-6.0.rc2
v1.11.0
v2.1.0-5.0.0
v2.0.1-5.0.0
v1.11.0-5.0.0
v2.0.1
v2.1.0-5.0.rc3
v1.11.0-5.0.rc3
v2.0.1-5.0.rc3
v1.11.0-5.0.rc3.3
v1.8.1
v1.11.0-x1
v1.8.1-5.0.rc3
v1.11.0-5.0.rc2.2
v1.11.0-zj
v1.11.0-5.0.rc2.1
v2.0.1-5.0.rc2
v1.11.0-5.0.rc2
v1.8.1-5.0.rc2
v2.0.0-5.0.rc2
v1.8.1-5.0.rc1
v1.11.0-5.0.rc1
v1.11.0-yd
v1.11.0-xf
v1.11.0-infer
v1.11.0-bigkernel
v1.11.0-host_api
v1.8.1-3.0.0
v1.11.0-5.0.rc2.t100
v1.8.1-5.0.rc2.t100
v1.8.1-3.0.0-dev
v1.11.0-3.0.0
v2.0-dev
v1.8.1-3.0.rc3
v1.5.0-3.0.0
v1.5.0
v1.8.1-3.0.rc1
v1.11.0-3.0.rc3
v1.8.1-3.0.rc2
v1.5.0-3.0.rc3
v1.5.0-3.0.rc2
2.0.4.tr5
v1.5.0-3.0.rc1
2.0.2.tr5
2.0.3.tr5
v7.2.RC1.alpha002-pytorch2.8.0
v7.2.RC1.alpha002-pytorch2.7.1
v7.2.RC1.alpha002-pytorch2.6.0
v7.2.RC1.alpha002-pytorch2.1.0
v7.1.0.2-pytorch2.5.1
v7.1.0.2-pytorch2.6.0
v7.1.0.2-pytorch2.1.0
v7.0.0.1-pytorch2.4.0
v7.0.0.1-pytorch2.1.0
v7.2.RC1.alpha001-pytorch2.8.0
v7.2.RC1.alpha001-pytorch2.7.1
v7.2.RC1.alpha001-pytorch2.6.0
v7.2.RC1.alpha001-pytorch2.5.1
v7.2.RC1.alpha001-pytorch2.1.0
v7.1.0.1-pytorch2.6.0
v7.1.0.1-pytorch2.5.1
v7.1.0.1-pytorch2.1.0
v7.1.0-pytorch2.6.0
v7.1.0-pytorch2.5.1
v7.1.0-pytorch2.1.0
v7.1.RC1.alpha003-pytorch2.6.0
v7.1.RC1.alpha003-pytorch2.5.1
v7.1.RC1.alpha003-pytorch2.1.0
v7.1.RC1.alpha002-pytorch2.7.1
v7.1.RC1.alpha002-pytorch2.6.0
v7.1.RC1.alpha002-pytorch2.5.1
v7.1.RC1.alpha002-pytorch2.4.0
v7.1.RC1.alpha002-pytorch2.3.1
v7.1.RC1.alpha002-pytorch2.1.0
v6.0.0.1-pytorch2.4.0
v6.0.0.1-pytorch2.3.1
v6.0.0.1-pytorch2.1.0
v7.1.RC1.alpha001-pytorch2.6.0
v7.1.RC1.alpha001-pytorch2.5.1
v7.1.RC1.alpha001-pytorch2.4.0
v7.1.RC1.alpha001-pytorch2.3.1
v7.1.RC1.alpha001-pytorch2.1.0
v7.0.0-pytorch2.5.1
v7.0.0-pytorch2.4.0
v7.0.0-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.6.0
v7.0.0-pytorch2.1.0
v7.0.RC1.alpha002-pytorch2.5.1
v7.0.RC1.alpha002-pytorch2.4.0
v7.0.RC1.alpha002-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.5.1
v7.0.RC1.alpha001-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.4.0
v7.0.RC1.alpha001-pytorch2.3.1
v6.0.0-pytorch2.4.0
v6.0.0-pytorch2.3.1
v6.0.0-pytorch2.1.0
v6.0.0.alpha003-pytorch2.4.0
v6.0.0.alpha003-pytorch2.3.1
v6.0.0.alpha003-pytorch2.1.0
v6.0.0.alpha002-pytorch2.4.0
v6.0.0.alpha002-pytorch2.3.1
v6.0.0.alpha002-pytorch2.1.0
v6.0.0.alpha001-pytorch2.5.1
v6.0.rc3-pytorch2.4.0
v6.0.rc3-pytorch2.3.1
v6.0.rc3-pytorch2.1.0
v6.0.0.alpha001-pytorch2.4.0
v6.0.0.alpha001-pytorch2.3.1
v6.0.0.alpha001-pytorch2.1.0
v6.0.rc2.1-pytorch1.11.0
v6.0.rc2.1-pytorch2.3.1
v6.0.rc2.1-pytorch2.2.0
v6.0.rc2.1-pytorch2.1.0
v6.0.rc3.alpha003-pytorch2.3.1
v6.0.rc3.alpha003-pytorch2.1.0
v6.0.rc3.alpha001-pytorch2.4.0
v6.0.rc3.alpha002-pytorch2.3.1
v6.0.rc3.alpha002-pytorch2.2.0
v6.0.rc3.alpha002-pytorch2.1.0
v6.0.rc3.alpha002-pytorch1.11.0
v6.0.rc2-pytorch2.1.0
v6.0.rc2-pytorch2.3.1
v6.0.rc2-pytorch2.2.0
v6.0.rc2-pytorch1.11.0
v6.0.rc3.alpha001-pytorch2.3.1
v6.0.rc3.alpha001-pytorch2.2.0
v6.0.rc3.alpha001-pytorch2.1.0
v6.0.rc3.alpha001-pytorch1.11.0
v6.0.rc2.alpha002-pytorch2.3.1
v6.0.rc2.alpha003-pytorch1.11.0
v6.0.rc2.alpha003-pytorch2.2.0
v6.0.rc2.alpha003-pytorch2.1.0
v6.0.rc1.1-pytorch2.2.0
v6.0.rc1.1-pytorch2.1.0
v6.0.rc1.1-pytorch1.11.0
v5.0.1.2-pytorch1.11.0
v5.0.1.2-pytorch2.1.0
v5.0.1.2-pytorch2.0.1
v6.0.rc2.alpha002-pytorch2.2.0
v6.0.rc2.alpha002-pytorch2.1.0
v6.0.rc2.alpha002-pytorch1.11.0
v6.0.rc1-pytorch2.2.0
v6.0.rc1-pytorch2.1.0
v6.0.rc1-pytorch1.11.0
v6.0.rc2.alpha001-pytorch2.2.0
v6.0.rc2.alpha001-pytorch2.1.0
v6.0.rc2.alpha001-pytorch1.11.0
v6.0.rc1.alpha003-pytorch2.0.1
v6.0.rc1.alpha003-pytorch2.1.0
v5.0.1.1-pytorch2.0.1
v5.0.1.1-pytorch1.11.0
v5.0.1.1-pytorch2.1.0
v6.0.rc1.alpha003-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.1.0
v6.0.rc1.alpha002-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.0.1
v6.0.rc1.alpha001-pytorch2.2.0
v5.0.1-pytorch2.1.0
v5.0.1-pytorch2.0.1
v5.0.1-pytorch1.11.0
v6.0.RC1.alpha001-pytorch2.0.1
v6.0.RC1.alpha001-pytorch2.1.0
v6.0.RC1.alpha001-pytorch1.11.0
v5.0.0-pytorch2.1.0
v5.0.0-pytorch2.0.1
v5.0.0-pytorch1.11.0
v5.0.0.alpha003-pytorch2.1.0
v5.0.0.alpha003-pytorch2.0.1
v5.0.0.alpha003-pytorch1.11.0
v5.0.rc3.3-pytorch1.11.0
v5.0.rc3.2-pytorch1.11.0
v5.0.0.alpha002-pytorch2.1.0
v5.0.0.alpha002-pytorch2.0.1
v5.0.0.alpha002-pytorch1.11.0
v5.0.rc3.1-pytorch1.11.0
v5.0.0.alpha001-pytorch2.1.0
v5.0.0.alpha001-pytorch2.0.1
v5.0.0.alpha001-pytorch1.11.0
v5.0.rc3-pytorch2.1.0
v5.0.rc3-pytorch2.0.1
v5.0.rc3-pytorch1.11.0
v5.0.rc3.alpha003-pytorch2.0.1
v5.0.rc3.alpha003-pytorch1.11.0
v5.0.rc3.alpha003-pytorch1.8.1
v5.0.rc2.2-pytorch1.11.0
v5.0.rc2.1-pytorch1.11.0
v5.0.rc3.alpha002-pytorch2.0.1
v5.0.rc3.alpha002-pytorch1.11.0
v5.0.rc3.alpha002-pytorch1.8.1
v5.0.rc2-pytorch2.0.1
v5.0.rc2-pytorch1.11.0
v5.0.rc2-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.8.1
v5.0.rc2.alpha002-pytorch1.11.0
v5.0.rc2.alpha002-pytorch1.8.1
v5.0.rc1.alpha003-pytorch1.11.0
v5.0.rc1.alpha003-pytorch1.8.1
v5.0.rc1-pytorch1.11.0
v5.0.rc1-pytorch1.8.1
v5.0.rc1.alpha002-pytorch1.11.0
v5.0.rc1.alpha002-pytorch1.8.1
v5.0.rc1.alpha001-pytorch1.11.0
v5.0.rc1.alpha001-pytorch1.8.1
v3.0.0-pytorch1.11.0
v3.0.0-pytorch1.8.1
v3.0.0-pytorch1.5.0
v3.0.alpha006-pytorch1.8.1
v3.0.alpha005-pytorch1.8.1
v3.0.alpha003-pytorch1.8.1
v3.0.rc3-pytorch1.11.0
v3.0.rc3-pytorch1.8.1
v3.0.rc3-pytorch1.5.0
v3.0.rc2-pytorch1.8.1
v3.0.rc2-pytorch1.5.0
v3.0.rc1-pytorch1.8.1
v3.0.rc1-pytorch1.5.0
v2.0.4
v2.0.4-rc2
v2.0.4-rc1
v2.0.3.1
v2.0.3
v2.0.3-rc4
v2.0.3-rc3
v2.0.3-rc2
v2.0.3-rc1
v2.0.2
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
Python
1
https://gitee.com/ascend/pytorch.git
git@gitee.com:ascend/pytorch.git
ascend
pytorch
pytorch
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册