登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
登录
注册
代码拉取完成,页面将自动刷新
开源项目
>
人工智能
>
机器学习/深度学习
&&
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
88
Star
641
Fork
1.3K
Ascend
/
pytorch
代码
Issues
40
Pull Requests
369
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
多卡训练报错
DONE
#IBWRR5
训练问题
17715631510
创建于
2025-03-27 16:06
一、问题现象(附报错日志上下文): 使用npu进行多卡训练,训练进行第一个step输出loss后报错,但是进程未停止,此代码在gpu上运行正常 warnings.warn(msg, ImportWarning) /root/miniconda3/lib/python3.10/site-packages/torch_npu/contrib/transfer_to_npu.py:260: RuntimeWarning: torch.jit.script and torch.jit.script_method will be disabled by transfer_to_npu, which currently does not support them, if you need to enable them, please do not use transfer_to_npu. warnings.warn(msg, RuntimeWarning) /root/miniconda3/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /pytorch/aten/src/ATen/native/TensorShape.cpp:3526.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /root/miniconda3/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /pytorch/aten/src/ATen/native/TensorShape.cpp:3526.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] ../root/code/MUlFS-CAP-v3/loss/loss.py:140: UserWarning: AutoNonVariableTypeMode is deprecated and will be removed in 1.10 release. For kernel implementations please use AutoDispatchBelowADInplaceOrView instead, If you are looking for a user facing API to enable running your inference-only workload, please use c10::InferenceMode. Using AutoDispatchBelowADInplaceOrView in user code is under risk of producing silent wrong result in some edge cases. See Note [AutoDispatchBelowAutograd] for more details. (Triggered internally at build/CMakeFiles/torch_npu.dir/compiler_depend.ts:74.) corresponding_win_matrix[sw_idx, lw_idx] = 1 /root/code/MUlFS-CAP-v3/loss/loss.py:140: UserWarning: AutoNonVariableTypeMode is deprecated and will be removed in 1.10 release. For kernel implementations please use AutoDispatchBelowADInplaceOrView instead, If you are looking for a user facing API to enable running your inference-only workload, please use c10::InferenceMode. Using AutoDispatchBelowADInplaceOrView in user code is under risk of producing silent wrong result in some edge cases. See Note [AutoDispatchBelowAutograd] for more details. (Triggered internally at build/CMakeFiles/torch_npu.dir/compiler_depend.ts:74.) corresponding_win_matrix[sw_idx, lw_idx] = 1 .. -epoch 0 -step 0 -loss_cm 6.637026786804199 -loss_cp 0.0029470184817910194 -loss_VISDP 0.0022156639024615288 -loss_IRDP 0.0012765157734975219 -loss_same 0.17338909208774567 ***************************************** [ WARN:0@257.966] global loadsave.cpp:848 imwrite_ Unsupported depth image for selected encoder is fallbacked to CV_8U. [E compiler_depend.ts:747] [Rank 1] HCCL watchdog thread terminated with exception: [ERROR] 2025-03-27-15:41:51 (PID:62782, Device:1, RankID:-1) ERR02005 DIST internal error [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! Traceback (most recent call last): File "/root/code/MUlFS-CAP-v3/train.py", line 246, in <module> torch.multiprocessing.spawn(train, File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 246, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method="spawn") File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 202, in start_processes while not context.join(): File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 145, in join raise ProcessExitedException( torch.multiprocessing.spawn.ProcessExitedException: process 1 terminated with signal SIGABRT [ERROR] 2025-03-27-15:41:53 (PID:62649, Device:-1, RankID:-1) ERR99999 UNKNOWN application exception /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpvo5yzzzs'> _warnings.warn(warn_message, ResourceWarning) [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpzibvt556'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmplfkdlkwm'> _warnings.warn(warn_message, ResourceWarning) root@autodl-container-acf446bcad-f098e0fb:~/code/MUlFS-CAP-v3# /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpgth70oub'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmphgi1q8f5'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpsdfm5j4l'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpmz1suwxr'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpz8zuxc75'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmps8x48pn3'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 102 leaked semaphore objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d ' 二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): Ascend-cann-kernels-910b_8.0.0_linux-aarch64 --Tensorflow/Pytorch/MindSpore 版本: 2.1.0 --Python 版本 (e.g., Python 3.7.5): Python 3.10.8 --操作系统版本 (e.g., Ubuntu 18.04): Ubuntu 22.04.5 LTS 三、测试步骤: 训练 四、所使用的train.py ``` import os import time from pathlib import Path import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data import torchvision from PIL import Image from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP from utils import utils from utils.utils import save_img from tqdm import tqdm import args from loss import loss as Loss from model import model import torch.distributed as dist import torch_npu # 导入昇腾相关库 def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # 初始化昇腾分布式训练 dist.init_process_group("hccl", rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() def adjust_learning_rate(optimizer, epoch_count): lr = args.args.LR + 0.5 * (args.args.LR_target - args.args.LR) * ( 1 + math.cos((epoch_count - args.args.Warm_epoch) / (args.args.Epoch - args.args.Warm_epoch) * math.pi)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def warmup_learning_rate(optimizer, epoch_count): lr = epoch_count * ((args.args.LR_target - args.args.LR) / args.args.Warm_epoch) + args.args.LR for param_group in optimizer.param_groups: param_group['lr'] = lr return lr class TrainDataset(data.Dataset): def __init__(self, vis_dir, ir_dir, transform): super(TrainDataset, self).__init__() self.vis_dir = vis_dir self.ir_dir = ir_dir self.vis_path, self.vis_paths = self.find_file(self.vis_dir) self.ir_path, self.ir_paths = self.find_file(self.ir_dir) self.vis_paths = sorted(self.vis_paths) self.ir_paths = sorted(self.ir_paths) assert (len(self.vis_path) == len(self.ir_path)) self.transform = transform def find_file(self, dir): path = os.listdir(dir) if os.path.isdir(os.path.join(dir, path[0])): paths = [] for dir_name in os.listdir(dir): for file_name in os.listdir(os.path.join(dir, dir_name)): paths.append(os.path.join(dir, file_name, file_name)) else: paths = list(Path(dir).glob('*')) return path, paths def read_image(self, path): img = Image.open(str(path)).convert('L') img = self.transform(img) return img def __getitem__(self, index): vis_path = self.vis_paths[index] ir_path = self.ir_paths[index] vis_img = self.read_image(vis_path) ir_img = self.read_image(ir_path) return vis_img, ir_img def __len__(self): return len(self.vis_path) def train(rank, world_size): setup(rank, world_size) device = torch.device(f"npu:{rank}") # 修改为npu设备 now = int(time.time()) timeArr = time.localtime(now) nowTime = time.strftime("%Y%m%d_%H-%M-%S", timeArr) save_model_dir = args.args.train_save_model_dir + "/" + nowTime + "_MulFS-CAP_model" save_img_dir = args.args.train_save_img_dir + "/" + nowTime + "_MulFS-CAP_img" if rank == 0: utils.check_dir(save_model_dir) utils.check_dir(save_img_dir) tf = torchvision.transforms.Compose([ torchvision.transforms.Resize([args.args.img_size, args.args.img_size]), torchvision.transforms.ToTensor() # (0, 255) -> (0, 1) ]) dataset = TrainDataset(args.args.vis_train_dir, args.args.ir_train_dir, tf) sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank) data_iter = data.DataLoader( dataset=dataset, shuffle=False, batch_size=args.args.batch_size, num_workers=4, sampler=sampler ) iter_num = int(dataset.__len__() / (args.args.batch_size * world_size)) save_image_iter = int(iter_num / args.args.save_image_num) Lgrad = Loss.L_Grad().to(device) CC = Loss.CorrelationCoefficient().to(device) Lcorrespondence = Loss.L_correspondence() # 使用新的模型类 model_obj = model.MulFS_CAP_Model().to(device) model_obj = DDP(model_obj, device_ids=[rank]) optimizer_FE = torch.optim.Adam([{'params': model_obj.module.base.parameters()}, {'params': model_obj.module.vis_MFE.parameters()}, {'params': model_obj.module.ir_MFE.parameters()}, {'params': model_obj.module.fusion_decoder.parameters()}, {'params': model_obj.module.PAFE.parameters()}, {'params': model_obj.module.decoder.parameters()}, {'params': model_obj.module.MN_vis.parameters()}, {'params': model_obj.module.MN_ir.parameters()}], lr=0.0002) optimizer_VISDP = torch.optim.Adam(model_obj.module.VISDP.parameters(), lr=0.0008) optimizer_IRDP = torch.optim.Adam(model_obj.module.IRDP.parameters(), lr=0.0008) optimizer_MHCSAvis = torch.optim.Adam(model_obj.module.MHCSA_vis.parameters(), lr=args.args.LR) optimizer_MHCSAir = torch.optim.Adam(model_obj.module.MHCSA_ir.parameters(), lr=args.args.LR) optimizer_FusionModule = torch.optim.Adam(model_obj.module.fusion_module.parameters(), lr=0.0002) for epoch in tqdm(range(args.args.Epoch)): sampler.set_epoch(epoch) if epoch < args.args.Warm_epoch: warmup_learning_rate(optimizer_MHCSAvis, epoch) warmup_learning_rate(optimizer_MHCSAir, epoch) else: adjust_learning_rate(optimizer_MHCSAvis, epoch) adjust_learning_rate(optimizer_MHCSAir, epoch) epoch_loss_VISDP = [] epoch_loss_IRDP = [] epoch_loss_same = [] epoch_loss_correspondence_matrix = [] epoch_loss_correspondence_predict = [] for step, x in enumerate(data_iter): vis = x[0].to(device) # vis ir = x[1].to(device) # ir with torch.no_grad(): vis_d, ir_d, _, index_r, _ = model_obj.module.ImageDeformation(vis, ir) fusion_image, fusion_f, fusion_image_1, fusion_d_image, fusion_d_f, fusion_d_image_1, fusion_image_sample, \ VISDP_vis_f, VISDP_vis_d_f, IRDP_ir_f, IRDP_ir_d_f, correspondence_matrixs, index_r = model_obj(vis, ir) # calculate loss loss_fusion = Lgrad(vis, ir, fusion_image) + Loss.Loss_intensity(vis, ir, fusion_image) + \ Lgrad(vis_d, ir_d, fusion_d_image) + Loss.Loss_intensity(vis_d, ir_d, fusion_d_image) loss_fusion_1 = Lgrad(vis, ir, fusion_image_1) + Loss.Loss_intensity(vis, ir, fusion_image_1) + \ Lgrad(vis_d, ir_d, fusion_d_image_1) + Loss.Loss_intensity(vis_d, ir_d, fusion_d_image_1) loss_0 = loss_fusion loss_VISDP = - CC(VISDP_vis_f, fusion_f.detach()) - CC(VISDP_vis_d_f, fusion_d_f.detach()) loss_IRDP = - CC(IRDP_ir_f, fusion_f.detach()) - CC(IRDP_ir_d_f, fusion_d_f.detach()) loss_same = F.mse_loss(VISDP_vis_f, IRDP_ir_f) + F.mse_loss(VISDP_vis_d_f, IRDP_ir_d_f) loss_1 = 2 * (loss_VISDP + loss_IRDP + loss_same) loss_2 = Lgrad(vis, ir, fusion_image_sample) + Loss.Loss_intensity(vis, ir, fusion_image_sample) loss_correspondence_matrix, loss_correspondence_matrix_1 = Lcorrespondence( correspondence_matrixs, index_r) loss_3 = 4 * (loss_correspondence_matrix + loss_correspondence_matrix_1) loss = loss_0 + loss_1 + loss_2 + loss_3 + loss_fusion_1 # optimizer network optimizer_VISDP.zero_grad() optimizer_IRDP.zero_grad() optimizer_MHCSAvis.zero_grad() optimizer_MHCSAir.zero_grad() optimizer_FusionModule.zero_grad() optimizer_FE.zero_grad() loss.backward() optimizer_FE.step() optimizer_VISDP.step() optimizer_IRDP.step() optimizer_MHCSAvis.step() optimizer_MHCSAir.step() optimizer_FusionModule.step() epoch_loss_VISDP.append(loss_VISDP.item()) epoch_loss_IRDP.append(loss_IRDP.item()) epoch_loss_same.append(loss_same.item()) epoch_loss_correspondence_matrix.append(loss_correspondence_matrix.item()) epoch_loss_correspondence_predict.append(loss_correspondence_matrix_1.item()) if rank == 0: print(" -epoch " + str(epoch)) print(" -step " + str(step)) print(" -loss_cm " + str(loss_correspondence_matrix.item()) + " -loss_cp " + str( loss_correspondence_matrix_1.item())) print(" -loss_VISDP " + str(loss_VISDP.item()) + " -loss_IRDP " + str( loss_IRDP.item())) print(" -loss_same " + str(loss_same.item())) print("*****************************************") if step % save_image_iter == 0 and rank == 0: epoch_step_name = str(epoch) + "epoch" + str(step) + "step" if epoch % 2 == 0: output_name = save_img_dir + "/" + epoch_step_name + ".jpg" out = torch.cat([vis, ir_d, fusion_image_1, fusion_image_sample, fusion_d_image_1], dim=2) out = out[0:1, :, :, :] save_img(out, output_name) if ((epoch + 1) == args.args.Epoch and (step + 1) % iter_num == 0) or ( epoch % args.args.save_model_num == 0 and (step + 1) % iter_num == 0) and rank == 0: module_name = "MulFS_CAP_Model" save_dir = '{:s}/epoch{:d}_iter{:d}_{:s}.pth'.format(save_model_dir, epoch, step + 1, module_name) utils.save_state_dir(model_obj.module, save_dir) if rank == 0: epoch_loss_correspondence_matrix_mean = np.mean(epoch_loss_correspondence_matrix) epoch_loss_correspondence_predict_mean = np.mean(epoch_loss_correspondence_predict) epoch_loss_VISDP_mean = np.mean(epoch_loss_VISDP) epoch_loss_IRDP_mean = np.mean(epoch_loss_IRDP) epoch_loss_same_mean = np.mean(epoch_loss_same) print("===========================================================================================") print(" -epoch " + str(epoch)) print(" -loss_cm " + str(epoch_loss_correspondence_matrix_mean) + " -loss_cp " + str( epoch_loss_correspondence_predict_mean)) print(" -loss_VISDP " + str(epoch_loss_VISDP_mean) + " -loss_IRDP " + str( epoch_loss_IRDP_mean)) print(" -loss_same " + str(epoch_loss_same_mean)) print("===========================================================================================") cleanup() if __name__ == "__main__": world_size = torch.npu.device_count() # 修改为npu设备数量 torch.multiprocessing.spawn(train, args=(world_size,), nprocs=world_size, join=True) ```
一、问题现象(附报错日志上下文): 使用npu进行多卡训练,训练进行第一个step输出loss后报错,但是进程未停止,此代码在gpu上运行正常 warnings.warn(msg, ImportWarning) /root/miniconda3/lib/python3.10/site-packages/torch_npu/contrib/transfer_to_npu.py:260: RuntimeWarning: torch.jit.script and torch.jit.script_method will be disabled by transfer_to_npu, which currently does not support them, if you need to enable them, please do not use transfer_to_npu. warnings.warn(msg, RuntimeWarning) /root/miniconda3/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /pytorch/aten/src/ATen/native/TensorShape.cpp:3526.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] /root/miniconda3/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /pytorch/aten/src/ATen/native/TensorShape.cpp:3526.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] ../root/code/MUlFS-CAP-v3/loss/loss.py:140: UserWarning: AutoNonVariableTypeMode is deprecated and will be removed in 1.10 release. For kernel implementations please use AutoDispatchBelowADInplaceOrView instead, If you are looking for a user facing API to enable running your inference-only workload, please use c10::InferenceMode. Using AutoDispatchBelowADInplaceOrView in user code is under risk of producing silent wrong result in some edge cases. See Note [AutoDispatchBelowAutograd] for more details. (Triggered internally at build/CMakeFiles/torch_npu.dir/compiler_depend.ts:74.) corresponding_win_matrix[sw_idx, lw_idx] = 1 /root/code/MUlFS-CAP-v3/loss/loss.py:140: UserWarning: AutoNonVariableTypeMode is deprecated and will be removed in 1.10 release. For kernel implementations please use AutoDispatchBelowADInplaceOrView instead, If you are looking for a user facing API to enable running your inference-only workload, please use c10::InferenceMode. Using AutoDispatchBelowADInplaceOrView in user code is under risk of producing silent wrong result in some edge cases. See Note [AutoDispatchBelowAutograd] for more details. (Triggered internally at build/CMakeFiles/torch_npu.dir/compiler_depend.ts:74.) corresponding_win_matrix[sw_idx, lw_idx] = 1 .. -epoch 0 -step 0 -loss_cm 6.637026786804199 -loss_cp 0.0029470184817910194 -loss_VISDP 0.0022156639024615288 -loss_IRDP 0.0012765157734975219 -loss_same 0.17338909208774567 ***************************************** [ WARN:0@257.966] global loadsave.cpp:848 imwrite_ Unsupported depth image for selected encoder is fallbacked to CV_8U. [E compiler_depend.ts:747] [Rank 1] HCCL watchdog thread terminated with exception: [ERROR] 2025-03-27-15:41:51 (PID:62782, Device:1, RankID:-1) ERR02005 DIST internal error [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! Traceback (most recent call last): File "/root/code/MUlFS-CAP-v3/train.py", line 246, in <module> torch.multiprocessing.spawn(train, File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 246, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method="spawn") File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 202, in start_processes while not context.join(): File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 145, in join raise ProcessExitedException( torch.multiprocessing.spawn.ProcessExitedException: process 1 terminated with signal SIGABRT [ERROR] 2025-03-27-15:41:53 (PID:62649, Device:-1, RankID:-1) ERR99999 UNKNOWN application exception /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpvo5yzzzs'> _warnings.warn(warn_message, ResourceWarning) [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! [ERROR] TBE Subprocess[task_distribute] raise error[], main process disappeared! /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpzibvt556'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmplfkdlkwm'> _warnings.warn(warn_message, ResourceWarning) root@autodl-container-acf446bcad-f098e0fb:~/code/MUlFS-CAP-v3# /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpgth70oub'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmphgi1q8f5'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpsdfm5j4l'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpmz1suwxr'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmpz8zuxc75'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/tempfile.py:860: ResourceWarning: Implicitly cleaning up <TemporaryDirectory '/tmp/tmps8x48pn3'> _warnings.warn(warn_message, ResourceWarning) /root/miniconda3/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 102 leaked semaphore objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d ' 二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): Ascend-cann-kernels-910b_8.0.0_linux-aarch64 --Tensorflow/Pytorch/MindSpore 版本: 2.1.0 --Python 版本 (e.g., Python 3.7.5): Python 3.10.8 --操作系统版本 (e.g., Ubuntu 18.04): Ubuntu 22.04.5 LTS 三、测试步骤: 训练 四、所使用的train.py ``` import os import time from pathlib import Path import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data import torchvision from PIL import Image from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP from utils import utils from utils.utils import save_img from tqdm import tqdm import args from loss import loss as Loss from model import model import torch.distributed as dist import torch_npu # 导入昇腾相关库 def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # 初始化昇腾分布式训练 dist.init_process_group("hccl", rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() def adjust_learning_rate(optimizer, epoch_count): lr = args.args.LR + 0.5 * (args.args.LR_target - args.args.LR) * ( 1 + math.cos((epoch_count - args.args.Warm_epoch) / (args.args.Epoch - args.args.Warm_epoch) * math.pi)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def warmup_learning_rate(optimizer, epoch_count): lr = epoch_count * ((args.args.LR_target - args.args.LR) / args.args.Warm_epoch) + args.args.LR for param_group in optimizer.param_groups: param_group['lr'] = lr return lr class TrainDataset(data.Dataset): def __init__(self, vis_dir, ir_dir, transform): super(TrainDataset, self).__init__() self.vis_dir = vis_dir self.ir_dir = ir_dir self.vis_path, self.vis_paths = self.find_file(self.vis_dir) self.ir_path, self.ir_paths = self.find_file(self.ir_dir) self.vis_paths = sorted(self.vis_paths) self.ir_paths = sorted(self.ir_paths) assert (len(self.vis_path) == len(self.ir_path)) self.transform = transform def find_file(self, dir): path = os.listdir(dir) if os.path.isdir(os.path.join(dir, path[0])): paths = [] for dir_name in os.listdir(dir): for file_name in os.listdir(os.path.join(dir, dir_name)): paths.append(os.path.join(dir, file_name, file_name)) else: paths = list(Path(dir).glob('*')) return path, paths def read_image(self, path): img = Image.open(str(path)).convert('L') img = self.transform(img) return img def __getitem__(self, index): vis_path = self.vis_paths[index] ir_path = self.ir_paths[index] vis_img = self.read_image(vis_path) ir_img = self.read_image(ir_path) return vis_img, ir_img def __len__(self): return len(self.vis_path) def train(rank, world_size): setup(rank, world_size) device = torch.device(f"npu:{rank}") # 修改为npu设备 now = int(time.time()) timeArr = time.localtime(now) nowTime = time.strftime("%Y%m%d_%H-%M-%S", timeArr) save_model_dir = args.args.train_save_model_dir + "/" + nowTime + "_MulFS-CAP_model" save_img_dir = args.args.train_save_img_dir + "/" + nowTime + "_MulFS-CAP_img" if rank == 0: utils.check_dir(save_model_dir) utils.check_dir(save_img_dir) tf = torchvision.transforms.Compose([ torchvision.transforms.Resize([args.args.img_size, args.args.img_size]), torchvision.transforms.ToTensor() # (0, 255) -> (0, 1) ]) dataset = TrainDataset(args.args.vis_train_dir, args.args.ir_train_dir, tf) sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank) data_iter = data.DataLoader( dataset=dataset, shuffle=False, batch_size=args.args.batch_size, num_workers=4, sampler=sampler ) iter_num = int(dataset.__len__() / (args.args.batch_size * world_size)) save_image_iter = int(iter_num / args.args.save_image_num) Lgrad = Loss.L_Grad().to(device) CC = Loss.CorrelationCoefficient().to(device) Lcorrespondence = Loss.L_correspondence() # 使用新的模型类 model_obj = model.MulFS_CAP_Model().to(device) model_obj = DDP(model_obj, device_ids=[rank]) optimizer_FE = torch.optim.Adam([{'params': model_obj.module.base.parameters()}, {'params': model_obj.module.vis_MFE.parameters()}, {'params': model_obj.module.ir_MFE.parameters()}, {'params': model_obj.module.fusion_decoder.parameters()}, {'params': model_obj.module.PAFE.parameters()}, {'params': model_obj.module.decoder.parameters()}, {'params': model_obj.module.MN_vis.parameters()}, {'params': model_obj.module.MN_ir.parameters()}], lr=0.0002) optimizer_VISDP = torch.optim.Adam(model_obj.module.VISDP.parameters(), lr=0.0008) optimizer_IRDP = torch.optim.Adam(model_obj.module.IRDP.parameters(), lr=0.0008) optimizer_MHCSAvis = torch.optim.Adam(model_obj.module.MHCSA_vis.parameters(), lr=args.args.LR) optimizer_MHCSAir = torch.optim.Adam(model_obj.module.MHCSA_ir.parameters(), lr=args.args.LR) optimizer_FusionModule = torch.optim.Adam(model_obj.module.fusion_module.parameters(), lr=0.0002) for epoch in tqdm(range(args.args.Epoch)): sampler.set_epoch(epoch) if epoch < args.args.Warm_epoch: warmup_learning_rate(optimizer_MHCSAvis, epoch) warmup_learning_rate(optimizer_MHCSAir, epoch) else: adjust_learning_rate(optimizer_MHCSAvis, epoch) adjust_learning_rate(optimizer_MHCSAir, epoch) epoch_loss_VISDP = [] epoch_loss_IRDP = [] epoch_loss_same = [] epoch_loss_correspondence_matrix = [] epoch_loss_correspondence_predict = [] for step, x in enumerate(data_iter): vis = x[0].to(device) # vis ir = x[1].to(device) # ir with torch.no_grad(): vis_d, ir_d, _, index_r, _ = model_obj.module.ImageDeformation(vis, ir) fusion_image, fusion_f, fusion_image_1, fusion_d_image, fusion_d_f, fusion_d_image_1, fusion_image_sample, \ VISDP_vis_f, VISDP_vis_d_f, IRDP_ir_f, IRDP_ir_d_f, correspondence_matrixs, index_r = model_obj(vis, ir) # calculate loss loss_fusion = Lgrad(vis, ir, fusion_image) + Loss.Loss_intensity(vis, ir, fusion_image) + \ Lgrad(vis_d, ir_d, fusion_d_image) + Loss.Loss_intensity(vis_d, ir_d, fusion_d_image) loss_fusion_1 = Lgrad(vis, ir, fusion_image_1) + Loss.Loss_intensity(vis, ir, fusion_image_1) + \ Lgrad(vis_d, ir_d, fusion_d_image_1) + Loss.Loss_intensity(vis_d, ir_d, fusion_d_image_1) loss_0 = loss_fusion loss_VISDP = - CC(VISDP_vis_f, fusion_f.detach()) - CC(VISDP_vis_d_f, fusion_d_f.detach()) loss_IRDP = - CC(IRDP_ir_f, fusion_f.detach()) - CC(IRDP_ir_d_f, fusion_d_f.detach()) loss_same = F.mse_loss(VISDP_vis_f, IRDP_ir_f) + F.mse_loss(VISDP_vis_d_f, IRDP_ir_d_f) loss_1 = 2 * (loss_VISDP + loss_IRDP + loss_same) loss_2 = Lgrad(vis, ir, fusion_image_sample) + Loss.Loss_intensity(vis, ir, fusion_image_sample) loss_correspondence_matrix, loss_correspondence_matrix_1 = Lcorrespondence( correspondence_matrixs, index_r) loss_3 = 4 * (loss_correspondence_matrix + loss_correspondence_matrix_1) loss = loss_0 + loss_1 + loss_2 + loss_3 + loss_fusion_1 # optimizer network optimizer_VISDP.zero_grad() optimizer_IRDP.zero_grad() optimizer_MHCSAvis.zero_grad() optimizer_MHCSAir.zero_grad() optimizer_FusionModule.zero_grad() optimizer_FE.zero_grad() loss.backward() optimizer_FE.step() optimizer_VISDP.step() optimizer_IRDP.step() optimizer_MHCSAvis.step() optimizer_MHCSAir.step() optimizer_FusionModule.step() epoch_loss_VISDP.append(loss_VISDP.item()) epoch_loss_IRDP.append(loss_IRDP.item()) epoch_loss_same.append(loss_same.item()) epoch_loss_correspondence_matrix.append(loss_correspondence_matrix.item()) epoch_loss_correspondence_predict.append(loss_correspondence_matrix_1.item()) if rank == 0: print(" -epoch " + str(epoch)) print(" -step " + str(step)) print(" -loss_cm " + str(loss_correspondence_matrix.item()) + " -loss_cp " + str( loss_correspondence_matrix_1.item())) print(" -loss_VISDP " + str(loss_VISDP.item()) + " -loss_IRDP " + str( loss_IRDP.item())) print(" -loss_same " + str(loss_same.item())) print("*****************************************") if step % save_image_iter == 0 and rank == 0: epoch_step_name = str(epoch) + "epoch" + str(step) + "step" if epoch % 2 == 0: output_name = save_img_dir + "/" + epoch_step_name + ".jpg" out = torch.cat([vis, ir_d, fusion_image_1, fusion_image_sample, fusion_d_image_1], dim=2) out = out[0:1, :, :, :] save_img(out, output_name) if ((epoch + 1) == args.args.Epoch and (step + 1) % iter_num == 0) or ( epoch % args.args.save_model_num == 0 and (step + 1) % iter_num == 0) and rank == 0: module_name = "MulFS_CAP_Model" save_dir = '{:s}/epoch{:d}_iter{:d}_{:s}.pth'.format(save_model_dir, epoch, step + 1, module_name) utils.save_state_dir(model_obj.module, save_dir) if rank == 0: epoch_loss_correspondence_matrix_mean = np.mean(epoch_loss_correspondence_matrix) epoch_loss_correspondence_predict_mean = np.mean(epoch_loss_correspondence_predict) epoch_loss_VISDP_mean = np.mean(epoch_loss_VISDP) epoch_loss_IRDP_mean = np.mean(epoch_loss_IRDP) epoch_loss_same_mean = np.mean(epoch_loss_same) print("===========================================================================================") print(" -epoch " + str(epoch)) print(" -loss_cm " + str(epoch_loss_correspondence_matrix_mean) + " -loss_cp " + str( epoch_loss_correspondence_predict_mean)) print(" -loss_VISDP " + str(epoch_loss_VISDP_mean) + " -loss_IRDP " + str( epoch_loss_IRDP_mean)) print(" -loss_same " + str(epoch_loss_same_mean)) print("===========================================================================================") cleanup() if __name__ == "__main__": world_size = torch.npu.device_count() # 修改为npu设备数量 torch.multiprocessing.spawn(train, args=(world_size,), nprocs=world_size, join=True) ```
评论 (
2
)
登录
后才可以发表评论
状态
DONE
TODO
ACCEPTED
Analysing
Feedback
WIP
Replied
CLOSED
DONE
REJECTED
负责人
未设置
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
分支 (79)
标签 (179)
master
v2.6.0
v2.7.1
v2.8.0
v2.5.1
v2.1.0
v2.5.1-7.1.0
v2.6.0-7.1.0
v2.1.0-7.1.0
revert-merge-23967-master
revert-merge-23966-v2.8.0
revert-merge-23965-v2.7.1
revert-merge-23964-v2.6.0
revert-merge-23962-v2.5.1
revert-merge-23789-v2.1.0
v2.1.0-7.0.0
v2.4.0-7.0.0
v2.4.0
v2.3.1
v2.3.1-7.0.0
v2.5.1-7.0.0
v2.4.0-6.0.0
v2.3.1-6.0.0
v2.1.0-6.0.0
v2.1.0-6.0.rc3
v2.3.1-6.0.rc3
v2.4.0-6.0.rc3
v2.2.0
v1.11.0-6.0.rc1
v2.1.0-6.0.rc1
v2.2.0-6.0.rc1
v1.11.0-6.0.rc2
v2.1.0-6.0.rc2
v2.2.0-6.0.rc2
v2.3.1-6.0.rc2
v1.11.0
v2.1.0-5.0.0
v2.0.1-5.0.0
v1.11.0-5.0.0
v2.0.1
v2.1.0-5.0.rc3
v1.11.0-5.0.rc3
v2.0.1-5.0.rc3
v1.11.0-5.0.rc3.3
v1.8.1
v1.11.0-x1
v1.8.1-5.0.rc3
v1.11.0-5.0.rc2.2
v1.11.0-zj
v1.11.0-5.0.rc2.1
v2.0.1-5.0.rc2
v1.11.0-5.0.rc2
v1.8.1-5.0.rc2
v2.0.0-5.0.rc2
v1.8.1-5.0.rc1
v1.11.0-5.0.rc1
v1.11.0-yd
v1.11.0-xf
v1.11.0-infer
v1.11.0-bigkernel
v1.11.0-host_api
v1.8.1-3.0.0
v1.11.0-5.0.rc2.t100
v1.8.1-5.0.rc2.t100
v1.8.1-3.0.0-dev
v1.11.0-3.0.0
v2.0-dev
v1.8.1-3.0.rc3
v1.5.0-3.0.0
v1.5.0
v1.8.1-3.0.rc1
v1.11.0-3.0.rc3
v1.8.1-3.0.rc2
v1.5.0-3.0.rc3
v1.5.0-3.0.rc2
2.0.4.tr5
v1.5.0-3.0.rc1
2.0.2.tr5
2.0.3.tr5
v7.0.0.1-pytorch2.4.0
v7.0.0.1-pytorch2.1.0
v7.2.RC1.alpha001-pytorch2.8.0
v7.2.RC1.alpha001-pytorch2.7.1
v7.2.RC1.alpha001-pytorch2.6.0
v7.2.RC1.alpha001-pytorch2.5.1
v7.2.RC1.alpha001-pytorch2.1.0
v7.1.0.1-pytorch2.6.0
v7.1.0.1-pytorch2.5.1
v7.1.0.1-pytorch2.1.0
v7.1.0-pytorch2.6.0
v7.1.0-pytorch2.5.1
v7.1.0-pytorch2.1.0
v7.1.RC1.alpha003-pytorch2.6.0
v7.1.RC1.alpha003-pytorch2.5.1
v7.1.RC1.alpha003-pytorch2.1.0
v7.1.RC1.alpha002-pytorch2.7.1
v7.1.RC1.alpha002-pytorch2.6.0
v7.1.RC1.alpha002-pytorch2.5.1
v7.1.RC1.alpha002-pytorch2.4.0
v7.1.RC1.alpha002-pytorch2.3.1
v7.1.RC1.alpha002-pytorch2.1.0
v6.0.0.1-pytorch2.4.0
v6.0.0.1-pytorch2.3.1
v6.0.0.1-pytorch2.1.0
v7.1.RC1.alpha001-pytorch2.6.0
v7.1.RC1.alpha001-pytorch2.5.1
v7.1.RC1.alpha001-pytorch2.4.0
v7.1.RC1.alpha001-pytorch2.3.1
v7.1.RC1.alpha001-pytorch2.1.0
v7.0.0-pytorch2.5.1
v7.0.0-pytorch2.4.0
v7.0.0-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.6.0
v7.0.0-pytorch2.1.0
v7.0.RC1.alpha002-pytorch2.5.1
v7.0.RC1.alpha002-pytorch2.4.0
v7.0.RC1.alpha002-pytorch2.3.1
v7.0.RC1.alpha002-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.5.1
v7.0.RC1.alpha001-pytorch2.1.0
v7.0.RC1.alpha001-pytorch2.4.0
v7.0.RC1.alpha001-pytorch2.3.1
v6.0.0-pytorch2.4.0
v6.0.0-pytorch2.3.1
v6.0.0-pytorch2.1.0
v6.0.0.alpha003-pytorch2.4.0
v6.0.0.alpha003-pytorch2.3.1
v6.0.0.alpha003-pytorch2.1.0
v6.0.0.alpha002-pytorch2.4.0
v6.0.0.alpha002-pytorch2.3.1
v6.0.0.alpha002-pytorch2.1.0
v6.0.0.alpha001-pytorch2.5.1
v6.0.rc3-pytorch2.4.0
v6.0.rc3-pytorch2.3.1
v6.0.rc3-pytorch2.1.0
v6.0.0.alpha001-pytorch2.4.0
v6.0.0.alpha001-pytorch2.3.1
v6.0.0.alpha001-pytorch2.1.0
v6.0.rc2.1-pytorch1.11.0
v6.0.rc2.1-pytorch2.3.1
v6.0.rc2.1-pytorch2.2.0
v6.0.rc2.1-pytorch2.1.0
v6.0.rc3.alpha003-pytorch2.3.1
v6.0.rc3.alpha003-pytorch2.1.0
v6.0.rc3.alpha001-pytorch2.4.0
v6.0.rc3.alpha002-pytorch2.3.1
v6.0.rc3.alpha002-pytorch2.2.0
v6.0.rc3.alpha002-pytorch2.1.0
v6.0.rc3.alpha002-pytorch1.11.0
v6.0.rc2-pytorch2.1.0
v6.0.rc2-pytorch2.3.1
v6.0.rc2-pytorch2.2.0
v6.0.rc2-pytorch1.11.0
v6.0.rc3.alpha001-pytorch2.3.1
v6.0.rc3.alpha001-pytorch2.2.0
v6.0.rc3.alpha001-pytorch2.1.0
v6.0.rc3.alpha001-pytorch1.11.0
v6.0.rc2.alpha002-pytorch2.3.1
v6.0.rc2.alpha003-pytorch1.11.0
v6.0.rc2.alpha003-pytorch2.2.0
v6.0.rc2.alpha003-pytorch2.1.0
v6.0.rc1.1-pytorch2.2.0
v6.0.rc1.1-pytorch2.1.0
v6.0.rc1.1-pytorch1.11.0
v5.0.1.2-pytorch1.11.0
v5.0.1.2-pytorch2.1.0
v5.0.1.2-pytorch2.0.1
v6.0.rc2.alpha002-pytorch2.2.0
v6.0.rc2.alpha002-pytorch2.1.0
v6.0.rc2.alpha002-pytorch1.11.0
v6.0.rc1-pytorch2.2.0
v6.0.rc1-pytorch2.1.0
v6.0.rc1-pytorch1.11.0
v6.0.rc2.alpha001-pytorch2.2.0
v6.0.rc2.alpha001-pytorch2.1.0
v6.0.rc2.alpha001-pytorch1.11.0
v6.0.rc1.alpha003-pytorch2.0.1
v6.0.rc1.alpha003-pytorch2.1.0
v5.0.1.1-pytorch2.0.1
v5.0.1.1-pytorch1.11.0
v5.0.1.1-pytorch2.1.0
v6.0.rc1.alpha003-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.1.0
v6.0.rc1.alpha002-pytorch1.11.0
v6.0.rc1.alpha002-pytorch2.0.1
v6.0.rc1.alpha001-pytorch2.2.0
v5.0.1-pytorch2.1.0
v5.0.1-pytorch2.0.1
v5.0.1-pytorch1.11.0
v6.0.RC1.alpha001-pytorch2.0.1
v6.0.RC1.alpha001-pytorch2.1.0
v6.0.RC1.alpha001-pytorch1.11.0
v5.0.0-pytorch2.1.0
v5.0.0-pytorch2.0.1
v5.0.0-pytorch1.11.0
v5.0.0.alpha003-pytorch2.1.0
v5.0.0.alpha003-pytorch2.0.1
v5.0.0.alpha003-pytorch1.11.0
v5.0.rc3.3-pytorch1.11.0
v5.0.rc3.2-pytorch1.11.0
v5.0.0.alpha002-pytorch2.1.0
v5.0.0.alpha002-pytorch2.0.1
v5.0.0.alpha002-pytorch1.11.0
v5.0.rc3.1-pytorch1.11.0
v5.0.0.alpha001-pytorch2.1.0
v5.0.0.alpha001-pytorch2.0.1
v5.0.0.alpha001-pytorch1.11.0
v5.0.rc3-pytorch2.1.0
v5.0.rc3-pytorch2.0.1
v5.0.rc3-pytorch1.11.0
v5.0.rc3.alpha003-pytorch2.0.1
v5.0.rc3.alpha003-pytorch1.11.0
v5.0.rc3.alpha003-pytorch1.8.1
v5.0.rc2.2-pytorch1.11.0
v5.0.rc2.1-pytorch1.11.0
v5.0.rc3.alpha002-pytorch2.0.1
v5.0.rc3.alpha002-pytorch1.11.0
v5.0.rc3.alpha002-pytorch1.8.1
v5.0.rc2-pytorch2.0.1
v5.0.rc2-pytorch1.11.0
v5.0.rc2-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.8.1
v5.0.rc3.alpha001-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.11.0
v5.0.rc2.alpha003-pytorch1.8.1
v5.0.rc2.alpha002-pytorch1.11.0
v5.0.rc2.alpha002-pytorch1.8.1
v5.0.rc1.alpha003-pytorch1.11.0
v5.0.rc1.alpha003-pytorch1.8.1
v5.0.rc1-pytorch1.11.0
v5.0.rc1-pytorch1.8.1
v5.0.rc1.alpha002-pytorch1.11.0
v5.0.rc1.alpha002-pytorch1.8.1
v5.0.rc1.alpha001-pytorch1.11.0
v5.0.rc1.alpha001-pytorch1.8.1
v3.0.0-pytorch1.11.0
v3.0.0-pytorch1.8.1
v3.0.0-pytorch1.5.0
v3.0.alpha006-pytorch1.8.1
v3.0.alpha005-pytorch1.8.1
v3.0.alpha003-pytorch1.8.1
v3.0.rc3-pytorch1.11.0
v3.0.rc3-pytorch1.8.1
v3.0.rc3-pytorch1.5.0
v3.0.rc2-pytorch1.8.1
v3.0.rc2-pytorch1.5.0
v3.0.rc1-pytorch1.8.1
v3.0.rc1-pytorch1.5.0
v2.0.4
v2.0.4-rc2
v2.0.4-rc1
v2.0.3.1
v2.0.3
v2.0.3-rc4
v2.0.3-rc3
v2.0.3-rc2
v2.0.3-rc1
v2.0.2
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
Python
1
https://gitee.com/ascend/pytorch.git
git@gitee.com:ascend/pytorch.git
ascend
pytorch
pytorch
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册