1 Star 0 Fork 1

booq/stylegan2-pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
fid.py 3.07 KB
一键复制 编辑 原始数据 按行查看 历史
Kim Seonghyeon 提交于 2019-12-23 03:45 . Updated FID calculator
import argparse
import pickle
import torch
from torch import nn
import numpy as np
from scipy import linalg
from tqdm import tqdm
from model import Generator
from calc_inception import load_patched_inception_v3
@torch.no_grad()
def extract_feature_from_samples(
generator, inception, truncation, truncation_latent, batch_size, n_sample, device
):
n_batch = n_sample // batch_size
resid = n_sample - (n_batch * batch_size)
batch_sizes = [batch_size] * n_batch + [resid]
features = []
for batch in tqdm(batch_sizes):
latent = torch.randn(batch, 512, device=device)
img, _ = g([latent], truncation=truncation, truncation_latent=truncation_latent)
feat = inception(img)[0].view(img.shape[0], -1)
features.append(feat.to('cpu'))
features = torch.cat(features, 0)
return features
def calc_fid(sample_mean, sample_cov, real_mean, real_cov, eps=1e-6):
cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False)
if not np.isfinite(cov_sqrt).all():
print('product of cov matrices is singular')
offset = np.eye(sample_cov.shape[0]) * eps
cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset))
if np.iscomplexobj(cov_sqrt):
if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3):
m = np.max(np.abs(cov_sqrt.imag))
raise ValueError(f'Imaginary component {m}')
cov_sqrt = cov_sqrt.real
mean_diff = sample_mean - real_mean
mean_norm = mean_diff @ mean_diff
trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt)
fid = mean_norm + trace
return fid
if __name__ == '__main__':
device = 'cuda'
parser = argparse.ArgumentParser()
parser.add_argument('--truncation', type=float, default=1)
parser.add_argument('--truncation_mean', type=int, default=4096)
parser.add_argument('--batch', type=int, default=64)
parser.add_argument('--n_sample', type=int, default=50000)
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--inception', type=str, default=None, required=True)
parser.add_argument('ckpt', metavar='CHECKPOINT')
args = parser.parse_args()
ckpt = torch.load(args.ckpt)
g = Generator(args.size, 512, 8).to(device)
g.load_state_dict(ckpt['g_ema'])
g = nn.DataParallel(g)
g.eval()
if args.truncation < 1:
with torch.no_grad():
mean_latent = g.mean_latent(args.truncation_mean)
else:
mean_latent = None
inception = nn.DataParallel(load_patched_inception_v3()).to(device)
inception.eval()
features = extract_feature_from_samples(
g, inception, args.truncation, mean_latent, args.batch, args.n_sample, device
).numpy()
print(f'extracted {features.shape[0]} features')
sample_mean = np.mean(features, 0)
sample_cov = np.cov(features, rowvar=False)
with open(args.inception, 'rb') as f:
embeds = pickle.load(f)
real_mean = embeds['mean']
real_cov = embeds['cov']
fid = calc_fid(sample_mean, sample_cov, real_mean, real_cov)
print('fid:', fid)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/booq_Lab/stylegan2-pytorch.git
git@gitee.com:booq_Lab/stylegan2-pytorch.git
booq_Lab
stylegan2-pytorch
stylegan2-pytorch
master

搜索帮助