代码拉取完成,页面将自动刷新
import os
import time
import cv2
import tensorflow as tf
from tensorflow.keras import layers
from IPython import display
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras import backend as K
%matplotlib inline
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from tensorflow import keras
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
img_height, img_width = 256, 256
batch_size = 128
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
'/home/aditya/VAE/cartoonset100k/',
image_size=(img_height, img_width),
batch_size=batch_size,
label_mode=None)
Found 100000 files belonging to 10 classes.
plt.figure(figsize=(10, 10))
for images in train_ds.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.axis("off")
normalization_layer = layers.experimental.preprocessing.Rescaling(scale= 1./255)
normalized_ds = train_ds.map(lambda x: normalization_layer(x))
image_batch = next(iter(normalized_ds))
first_image = image_batch[0]
print(np.min(first_image), np.max(first_image))
0.0 1.0
input_encoder = (256, 256, 3)
input_decoder = (200,)
def encoder(input_encoder):
inputs = keras.Input(shape=input_encoder, name='input_layer')
x = layers.Conv2D(32, kernel_size=3, strides= 2, padding='same', name='conv_1')(inputs)
x = layers.BatchNormalization(name='bn_1')(x)
x = layers.LeakyReLU(name='lrelu_1')(x)
x = layers.Conv2D(64, kernel_size=3, strides= 2, padding='same', name='conv_2')(x)
x = layers.BatchNormalization(name='bn_2')(x)
x = layers.LeakyReLU(name='lrelu_2')(x)
x = layers.Conv2D(64, 3, 2, padding='same', name='conv_3')(x)
x = layers.BatchNormalization(name='bn_3')(x)
x = layers.LeakyReLU(name='lrelu_3')(x)
x = layers.Conv2D(64, 3, 2, padding='same', name='conv_4')(x)
x = layers.BatchNormalization(name='bn_4')(x)
x = layers.LeakyReLU(name='lrelu_4')(x)
x = layers.Conv2D(64, 3, 2, padding='same', name='conv_5')(x)
x = layers.BatchNormalization(name='bn_5')(x)
x = layers.LeakyReLU(name='lrelu_5')(x)
flatten = layers.Flatten()(x)
bottleneck = layers.Dense(200, name='dense_1')(flatten)
model = tf.keras.Model(inputs, bottleneck, name="Encoder")
return model
enc = encoder(input_encoder)
#enc.save('enc.h5')
enc.summary()
Model: "Encoder" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_layer (InputLayer) [(None, 256, 256, 3)] 0 _________________________________________________________________ conv_1 (Conv2D) (None, 128, 128, 32) 896 _________________________________________________________________ bn_1 (BatchNormalization) (None, 128, 128, 32) 128 _________________________________________________________________ lrelu_1 (LeakyReLU) (None, 128, 128, 32) 0 _________________________________________________________________ conv_2 (Conv2D) (None, 64, 64, 64) 18496 _________________________________________________________________ bn_2 (BatchNormalization) (None, 64, 64, 64) 256 _________________________________________________________________ lrelu_2 (LeakyReLU) (None, 64, 64, 64) 0 _________________________________________________________________ conv_3 (Conv2D) (None, 32, 32, 64) 36928 _________________________________________________________________ bn_3 (BatchNormalization) (None, 32, 32, 64) 256 _________________________________________________________________ lrelu_3 (LeakyReLU) (None, 32, 32, 64) 0 _________________________________________________________________ conv_4 (Conv2D) (None, 16, 16, 64) 36928 _________________________________________________________________ bn_4 (BatchNormalization) (None, 16, 16, 64) 256 _________________________________________________________________ lrelu_4 (LeakyReLU) (None, 16, 16, 64) 0 _________________________________________________________________ conv_5 (Conv2D) (None, 8, 8, 64) 36928 _________________________________________________________________ bn_5 (BatchNormalization) (None, 8, 8, 64) 256 _________________________________________________________________ lrelu_5 (LeakyReLU) (None, 8, 8, 64) 0 _________________________________________________________________ flatten (Flatten) (None, 4096) 0 _________________________________________________________________ dense_1 (Dense) (None, 200) 819400 ================================================================= Total params: 950,728 Trainable params: 950,152 Non-trainable params: 576 _________________________________________________________________
def decoder(input_decoder):
inputs = keras.Input(shape=input_decoder, name='input_layer')
x = layers.Dense(4096, name='dense_1')(inputs)
#x = tf.reshape(x, [-1, 8, 8, 64], name='Reshape_Layer')
x = layers.Reshape((8,8,64), name='Reshape_Layer')(x)
x = layers.Conv2DTranspose(64, 3, strides= 2, padding='same',name='conv_transpose_1')(x)
x = layers.BatchNormalization(name='bn_1')(x)
x = layers.LeakyReLU(name='lrelu_1')(x)
x = layers.Conv2DTranspose(64, 3, strides= 2, padding='same', name='conv_transpose_2')(x)
x = layers.BatchNormalization(name='bn_2')(x)
x = layers.LeakyReLU(name='lrelu_2')(x)
x = layers.Conv2DTranspose(64, 3, 2, padding='same', name='conv_transpose_3')(x)
x = layers.BatchNormalization(name='bn_3')(x)
x = layers.LeakyReLU(name='lrelu_3')(x)
x = layers.Conv2DTranspose(32, 3, 2, padding='same', name='conv_transpose_4')(x)
x = layers.BatchNormalization(name='bn_4')(x)
x = layers.LeakyReLU(name='lrelu_4')(x)
outputs = layers.Conv2DTranspose(3, 3, 2,padding='same', activation='sigmoid', name='conv_transpose_5')(x)
model = tf.keras.Model(inputs, outputs, name="Decoder")
return model
dec = decoder(input_decoder)
dec.summary()
Model: "Decoder" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_layer (InputLayer) [(None, 200)] 0 _________________________________________________________________ dense_1 (Dense) (None, 4096) 823296 _________________________________________________________________ Reshape_Layer (Reshape) (None, 8, 8, 64) 0 _________________________________________________________________ conv_transpose_1 (Conv2DTran (None, 16, 16, 64) 36928 _________________________________________________________________ bn_1 (BatchNormalization) (None, 16, 16, 64) 256 _________________________________________________________________ lrelu_1 (LeakyReLU) (None, 16, 16, 64) 0 _________________________________________________________________ conv_transpose_2 (Conv2DTran (None, 32, 32, 64) 36928 _________________________________________________________________ bn_2 (BatchNormalization) (None, 32, 32, 64) 256 _________________________________________________________________ lrelu_2 (LeakyReLU) (None, 32, 32, 64) 0 _________________________________________________________________ conv_transpose_3 (Conv2DTran (None, 64, 64, 64) 36928 _________________________________________________________________ bn_3 (BatchNormalization) (None, 64, 64, 64) 256 _________________________________________________________________ lrelu_3 (LeakyReLU) (None, 64, 64, 64) 0 _________________________________________________________________ conv_transpose_4 (Conv2DTran (None, 128, 128, 32) 18464 _________________________________________________________________ bn_4 (BatchNormalization) (None, 128, 128, 32) 128 _________________________________________________________________ lrelu_4 (LeakyReLU) (None, 128, 128, 32) 0 _________________________________________________________________ conv_transpose_5 (Conv2DTran (None, 256, 256, 3) 867 ================================================================= Total params: 954,307 Trainable params: 953,859 Non-trainable params: 448 _________________________________________________________________
#dec.save('ae-cartoon-dec.h5')
#model.layers[1].get_weights()
#model.save('autoencoder.h5')
optimizer = tf.keras.optimizers.Adam(lr = 0.0005)
def ae_loss(y_true, y_pred):
#loss = tf.keras.losses.mean_squared_error(y_true, y_pred)
#loss = tf.reduce_mean(tf.square(tf.subtract(y_true, y_pred)))
loss = K.mean(K.square(y_true - y_pred), axis = [1,2,3])
return loss
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images):
with tf.GradientTape() as encoder, tf.GradientTape() as decoder:
latent = enc(images, training=True)
generated_images = dec(latent, training=True)
loss = ae_loss(images, generated_images)
gradients_of_enc = encoder.gradient(loss, enc.trainable_variables)
gradients_of_dec = decoder.gradient(loss, dec.trainable_variables)
optimizer.apply_gradients(zip(gradients_of_enc, enc.trainable_variables))
optimizer.apply_gradients(zip(gradients_of_dec, dec.trainable_variables))
return loss
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
i = 0
loss_ = []
for image_batch in dataset:
i += 1
loss = train_step(image_batch)
#loss_.append(loss)
#print("Loss",np.mean(loss_))
seed = image_batch[:25]
display.clear_output(wait=True)
generate_and_save_images([enc,dec],
epoch + 1,
seed)
# Save the model every 15 epochs
#if (epoch + 1) % 15 == 0:
#checkpoint.save(file_prefix = checkpoint_prefix)
enc.save_weights('tf_ae/cartoon/training_weights/enc_'+ str(epoch)+'.h5')
dec.save_weights('tf_ae/cartoon/training_weights/dec_'+ str(epoch)+'.h5')
print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
# Generate after the final epoch
display.clear_output(wait=True)
generate_and_save_images([enc,final,dec],
epochs,
seed)
def generate_and_save_images(model, epoch, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
latent = enc(test_input, training=False)
predictions = dec(latent, training=False)
print(predictions.shape)
fig = plt.figure(figsize=(4,4))
for i in range(predictions.shape[0]):
plt.subplot(5, 5, i+1)
pred = predictions[i, :, :, :] * 255
pred = np.array(pred)
pred = pred.astype(np.uint8)
#cv2.imwrite('tf_ae/images/image'+ str(i)+'.png',pred)
plt.imshow(pred)
plt.axis('off')
plt.savefig('tf_ae/cartoon/images/image_at_epoch_{:d}.png'.format(epoch))
plt.show()
train(normalized_ds, 30)
enc.load_weights('../tf_ae/cartoon/training_weights/enc_29.h5')
dec.load_weights('../tf_ae/cartoon/training_weights/dec_29.h5')
embeddings = None
for i in normalized_ds:
latent = enc.predict(i)
if embeddings is None:
embeddings = latent
else:
embeddings = np.concatenate((embeddings, latent))
if embeddings.shape[0] > 5000:
break
embeddings.shape
(128, 200)
n_to_show = 5000
grid_size = 15
figsize = 12
tsne = TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(embeddings)
min_x = min(X_tsne[:, 0])
max_x = max(X_tsne[:, 0])
min_y = min(X_tsne[:, 1])
max_y = max(X_tsne[:, 1])
plt.figure(figsize=(figsize, figsize))
plt.scatter(X_tsne[:, 0] , X_tsne[:, 1], alpha=0.5, s=2)
plt.xlabel("Dimension-1", size=20)
plt.ylabel("Dimension-2", size=20)
plt.xticks(size=20)
plt.yticks(size=20)
plt.title("Autoencoder - Projection of 200D Latent-Space to 2D (Cartoon Set)", size=18)
plt.show()
reconstruction = None
lat_space = None
for i in normalized_ds:
latent= enc.predict(i)
out = dec.predict(latent)
if reconstruction is None:
reconstruction = out
lat_space = latent
else:
reconstruction = np.concatenate((reconstruction, out))
lat_space = np.concatenate((lat_space, latent))
if reconstruction.shape[0] > 5000:
break
reconstruction.shape
(5120, 256, 256, 3)
figsize = 15
fig = plt.figure(figsize=(figsize, 10))
#fig.subplots_adjust(hspace=0.2, wspace=None)
for i in range(25):
ax = fig.add_subplot(5, 5, i+1)
ax.axis('off')
pred = reconstruction[i, :, :, :] * 255
pred = np.array(pred)
pred = pred.astype(np.uint8)
ax.imshow(pred)
figsize = 15
min_x = lat_space.min(axis=0)
max_x = lat_space.max(axis=0)
# #print(max_x.shape, min_x.shape)
x = np.random.uniform(size = (10,200))
x = x * (max_x - (np.abs(min_x)))
print(x.shape)
#x = np.random.normal(size = (10,200))
reconstruct = dec.predict(x)
fig = plt.figure(figsize=(figsize, 10))
for i in range(10):
ax = fig.add_subplot(5, 5, i+1)
ax.axis('off')
pred = reconstruct[i, :, :, :] * 255
pred = np.array(pred)
pred = pred.astype(np.uint8)
ax.imshow(pred)
(10, 200)
x = np.random.normal(size = (10,200))
reconstruct = dec.predict(x)
fig = plt.figure(figsize=(15, 10))
fig.subplots_adjust(hspace=0.2, wspace=0.2)
for i in range(10):
ax = fig.add_subplot(5, 5, i+1)
ax.axis('off')
pred = reconstruct[i, :, :, :] * 255
pred = np.array(pred)
pred = pred.astype(np.uint8)
ax.imshow(pred)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。