代码拉取完成,页面将自动刷新
from __future__ import (
division,
absolute_import,
with_statement,
print_function,
unicode_literals,
)
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_sched
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
import pointnet2.train.etw_pytorch_utils as pt_utils
import pprint
import os.path as osp
import os
import argparse
import tqdm
# from etw_pytorch_utils import checkpoint_state, save_checkpoint
import numpy as np
from utils import CrossEntropyLoss_with_prob, cross_entropy_with_probs
from pointnet2.models import Pointnet2ClsMSG as Pointnet
from pointnet2.models.pointnet2_msg_cls import Pointnet2MSG_manimix as Pointnet_manimix
from pointnet2.models.pointnet2_msg_cls import model_fn_decorator, model_fn_decorator_mix
from pointnet2.data import ModelNet40Cls
import pointnet2.data.data_utils as d_utils
from pytorchgo.utils import logger
from pytorchgo.utils.pytorch_utils import model_summary, optimizer_summary
from pytorchgo.utils.pytorch_utils import set_gpu
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def parse_args():
parser = argparse.ArgumentParser(
description="Arguments for cls training",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"-model", type=str, default='pointnet2', help="pointnet2"
)
parser.add_argument(
"-data", type=str, default='modelnet40', help="modelnet40"
)
parser.add_argument("-batch_size", type=int, default=16, help="Batch size")
parser.add_argument(
"-num_points", type=int, default=1024, help="Number of points to train with"
)
parser.add_argument(
"-weight_decay", type=float, default=-1, help="L2 regularization coeff, -1 use defined value"
)
parser.add_argument("-lr", type=float, default=1e-3, help="Initial learning rate")
parser.add_argument(
"-lr_decay", type=float, default=0.7, help="Learning rate decay gamma"
)
parser.add_argument(
"-decay_step", type=float, default=2.5e5, help="Learning rate decay step"
)
parser.add_argument(
"-bn_momentum", type=float, default=0.5, help="Initial batch norm momentum"
)
parser.add_argument(
"-bnm_decay", type=float, default=0.5, help="Batch norm momentum decay gamma"
)
parser.add_argument(
"-savename", type=str, default='testexp', help="savename"
)
parser.add_argument('-pointmixup', type=boolean_string, default=True, help="if use pointmixup (including point manifold mixup)")
parser.add_argument('-manimixup', type=boolean_string, default=True, help="if use manifold mixup instead of only input mixup in PointMixup")
parser.add_argument(
"-epochs", type=int, default=500, help="Number of epochs to train for"
)
# parser.add_argument(
# "-manilayer", type=int, default=0, help="[0,1,2]"
# )
parser.add_argument('-rot', type=boolean_string, default=True, help="random up-rotation")
parser.add_argument(
"-mixup_alpha", type=float, default=-1, help="mixup parameter that controls beta distribution where the mixrate is drawn from. -1 use defined parameter"
)
parser.add_argument('-evaluate', action='store_true',
help='evaluate')
parser.add_argument(
"-checkpoint", type=str, default=None, help="Checkpoint to start from"
)
parser.add_argument('-align', type=boolean_string, default=False, help="if align the up-rotation of shapes by symmetry axis, recommended for pointmixup (input mixup)")
return parser.parse_args()
lr_clip = 1e-5
bnm_clip = 1e-2
if __name__ == "__main__":
args = parse_args()
if args.weight_decay < 0: # default
if not args.pointmixup:
args.weight_decay = 1e-5
else:
if not args.manimixup:
args.weight_decay = 5e-6
else:
args.weight_decay = 1e-6
if args.pointmixup and args.mixup_alpha < 0:
if args.rot:
if not args.manimixup:
args.mixup_alpha = 0.4
else:
args.mixup_alpha = 1.5
else:
if not args.manimixup:
args.mixup_alpha = 1.0
else:
args.mixup_alpha = 2.0
if (args.pointmixup and args.rot) and (not args.manimixup):
args.align = True
else:
args.align = False
# logger.auto_set_dir('d', "{}_{}".format(args.data, args.model))
logger.auto_set_dir('d', "{}".format(args.savename))
if args.data == 'modelnet40':
num_class = 40
dataset_cls = ModelNet40Cls
else:
raise NotImplementedError
args.epochs = int(args.epochs)
from tensorboardX import SummaryWriter
writer = SummaryWriter(comment=args.savename)
writer.add_text('args', str(args), 0)
transforms_test = d_utils.PointcloudToTensor()
if args.rot:
transforms = transforms.Compose(
[
d_utils.PointcloudToTensor(),
d_utils.PointcloudScale(),
d_utils.PointcloudRotate(),
d_utils.PointcloudTranslate(),
d_utils.PointcloudJitter()
]
)
else:
transforms = transforms.Compose(
[
d_utils.PointcloudToTensor(),
d_utils.PointcloudScale(),
d_utils.PointcloudTranslate(),
d_utils.PointcloudJitter()
]
)
if args.data == 'modelnet40':
num_class = 40
dataset_cls = ModelNet40Cls
test_set = dataset_cls(args.num_points, transforms=transforms_test, train=False)
test_loader = DataLoader(
test_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=10,
pin_memory=True,
)
train_set = dataset_cls(args.num_points, transforms=transforms, keeprate=1.0)
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=10,
pin_memory=True,
)
n_strategies = 0
if args.pointmixup: n_strategies += 1
if args.manimixup: n_strategies = n_strategies * 3
if args.model == 'pointnet2':
if args.pointmixup: # input mixup is incorporated with manimix
model = Pointnet_manimix(input_channels=0, num_classes=num_class, use_xyz=True, align=args.align)
else:
model = Pointnet(input_channels=0, num_classes=num_class, use_xyz=True)
model.cuda()
optimizer = optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay
)
lr_lbmd = lambda it: max(
args.lr_decay ** (int(it * args.batch_size / args.decay_step)),
lr_clip / args.lr,
)
bn_lbmd = lambda it: max(
args.bn_momentum
* args.bnm_decay ** (int(it * args.batch_size / args.decay_step)),
bnm_clip,
)
# default value
it = -1 # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
best_loss = 1e10
start_epoch = 1
# load status from checkpoint
if args.checkpoint is not None:
logger.warning("loading checkpoint weight file")
checkpoint_status = pt_utils.load_checkpoint(
model, optimizer, filename=args.checkpoint
)
if checkpoint_status is not None:
it, start_epoch, best_loss = checkpoint_status
lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lambda=lr_lbmd, last_epoch=it)
bnm_scheduler = pt_utils.BNMomentumScheduler(
model, bn_lambda=bn_lbmd, last_epoch=it
)
it = max(it, 0) # for the initialize value of `trainer.train`
if args.pointmixup:
model_fn = model_fn_decorator_mix(cross_entropy_with_probs, nn.CrossEntropyLoss(), num_class=num_class)
else:
model_fn = model_fn_decorator(nn.CrossEntropyLoss())
if not osp.isdir("checkpoints"):
os.makedirs("checkpoints")
model_summary(model)
optimizer_summary(optimizer)
trainer = pt_utils.Trainer_mix(
model,
model_fn,
optimizer,
checkpoint_name="checkpoints/" + args.savename,
best_name="checkpoints/best" + args.savename,
lr_scheduler=lr_scheduler,
bnm_scheduler=bnm_scheduler,
savename=args.savename,
eval_frequency=int(len(train_loader)),
pointmixup=args.pointmixup,
manimixup=args.manimixup,
alpha=args.mixup_alpha
)
if args.evaluate:
logger.warning("evaluating mode")
_ = trainer.eval_epoch(test_loader)
exit(0)
trainer.train(
it, start_epoch, args.epochs, train_loader, test_loader, best_loss=best_loss, writer=writer
)
if start_epoch == args.epochs:
_ = trainer.eval_epoch(test_loader)
# writer.export_scalars_to_json("all_scalars.json")
writer.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。