代码拉取完成,页面将自动刷新
#!/usr/bin/env python
# coding: utf-8
# Imports here
import matplotlib.pyplot as plt
import torch
import numpy as np
from torch import nn
from torch import optim
import torch.nn.functional as F
from torchvision import datasets, transforms, models
from workspace_utils import active_session
from PIL import Image
import argparse
import json
import setup
parser = argparse.ArgumentParser()
parser.add_argument('--img_path', action='store', dest='img_path', help='path of image to predict', required=True)
parser.add_argument('--cp_dir', action='store', dest='cp_path', help='path of checkpoint', required=True)
parser.add_argument('--top_k', action="store", default=5, dest="top_k", type=int)
parser.add_argument('--category_names', action="store", dest="category_names", default='cat_to_name.json')
parser.add_argument('--gpu', action='store_true', default=False, dest='boolean_t', help='Set a switch to use GPU')
results = parser.parse_args()
img_path = results.img_path
checkpoint_path = results.cp_path
top_k = results.top_k
category_names = results.category_names
gpu = results.boolean_t
if gpu==True:
using_gpu = torch.cuda.is_available()
device = 'gpu'
print('GPU On');
else:
print('GPU Off');
device = 'cpu'
model = setup.loading_checkpoint(checkpoint_path)
processed_image = setup.process_image(img_path)
probs, classes = setup.predict(processed_image, model, top_k, device)
# Label mapping
cat_to_name = setup.labeling(category_names)
labels = []
for class_index in classes:
labels.append(cat_to_name[str(class_index)])
# Converting from tensor to numpy-array
print('Name of class: ', labels[0])
print('Probability: ', probs)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。